
DEVELOPMENT OF NOVEL

ALGORITHMS FOR ANALYSIS AND

VISUALIZATION OF LARGE GRAPH
A THESIS SUBMITTED TO

SAVITRIBAI PHULE PUNE UNIVERSITY

FOR AWARD OF DEGREE OF

DOCTOR OF PHILOSOPHY (PH.D)

IN THE FACULTY OF

COMPUTER ENGINEERING

SUBMITTED BY

MS. SWATI KRISHNA BHAVSAR

UNDER THE GUIDANCE OF

Dr. VARSHA HEMANT PATIL

RESEARCH CENTRE

DEPARTMENT OF COMPUTER ENGINEERING

MATOSHRI COLLEGE OF ENGINEERING AND RESEARCH CENTRE

EKLAHARE, NASHIK

SEPTEMBER 2018

MATOSHRI COLLEGE OF ENGINEERING AND RESEARCH

CENTRE, EKLAHARE, NASHIK

DEPARTMENT OF COMPUTER ENGINEERING

CERTIFICATE

This is to certify that the work incorporated in the thesis, “Development of Novel

Algorithms for Analysis and Visualization of Large Graph” is submitted by Ms.

Swati Krishna Bhavsar for the Doctor of Philosophy (Ph.D) in Computer En-

gineering, Savitribai Phule Pune University, has been carried out by the candidate

at Department of Computer Engineering, Matoshri College of Engineering and

Research Centre Eklahare, Nashik during the period from July 2014 to September

2018 under the guidance of Prof.(Dr.) Varsha Hemant Patil.

Prof.(Dr.) Varsha Hemant Patil Prof.(Dr.) Gajanan K. Kharate

Research Guide, Principal,

Vice Principal and Head, MCOERC, Eklahare, Nashik

Computer Engineering,

MCOERC, Eklahare, Nashik

Certificate of the Guide

Certified that the work incorporated in the thesis “Development of Novel Algorithms

for Analysis and Visualization of Large Graph” submitted by Ms. Swati

Krishna Bhavsar was carried out by the candidate for the Doctor of Philosophy

(Ph.D) degree at Department of Computer Engineering, Matoshri College of

Engineering and Research Centre, Eklahare, Nashik during the period from July

2014 to September 2018 under my direct supervision and guidance.

Place: Prof.(Dr.)Varsha Hemant Patil

Date: Research Guide,

Vice Principal and Head,

Computer Engineering,

MCOERC, Eklahare, Nashik

Declaration by the Candidate

I Hereby declare that the thesis entitled “Development of Novel Algorithms for

Analysis and Visualization of Large Graph” submitted by me to the Savitribai

Phule Pune University, Pune for the degree of Doctor of Philosophy(PhD) in

Computer Engineering, is the record of work carried out by me during the period from

July 2014 to September 2018 under the guidance of Prof. (Dr.) Varsha Hemant

Patil and has not formed the basis for the award of any degree, diploma, associateship,

fellowship, titles in this or any other University or other Institution of Higher learning. I

further declare that the material obtained from other sources has been duly acknowledged

in the thesis.

Place: Ms. Swati Krishna Bhavsar

Date: Research Scholar

Department of Computer Engineering,

MCOERC, Eklahare, Nashik

Abstract

Large Graphs are widely used to represent information in various scientific fields and busi-

nesses like Very Large Scale Integrations (VLSI) designs, social networking, medical applica-

tions, publication records and similar. Analysis and visualization of a large graph containing

thousands of vertices and edges is a very challenging task. Solution to this problem is to

partition a large graph into sub-graphs and then analyse and visualize each sub-graph in-

dependently. Besides traditional goals of partitioning, an efficient novel algorithm must

partition a given graph in minimum amount of time, with minimum edge-cuts and without

any loss of data and visualize sub-graphs efficiently independent of application.

In this thesis, we present an efficient graph partitioning algorithm and visualization tool

as outcomes of our research work. Firstly, a Novel Cut-set and Partitioning Algorithm

(CPA) has been developed. The algorithm follows a principle of finding most connected

components in a network and vertex cluster-based approach for graph partitioning. Sec-

ondly, for the better understanding of generated sub-graphs, an efficient visualization tool

is developed. Thirdly, an algorithm for an author information retrieval is developed that

uses CPA algorithm and visualization tool for Digital Bibliographic and Library Project

(DBLP) dataset to retrieve specific author publication details and correlation among au-

thors. Further performance of an author is measured by introducing novel parameters like

consistency and contribution factor in addition to stability, cooperativeness and solidity.

These algorithms are successfully implemented and tested; it is observed that it ef-

fectively works for graph of any size for partitioning and visualization. Using a vertex

clustering approach with most connected component, research work signifies that devel-

oped algorithms perform better partitioning for any large graph with minimum number of

edge-cuts. Further it supports to visualize all sub-graphs obtained after partitioning more

iv

Development of Novel Algorithms for Analysis and Visualization of Large Graph

effectively. Algorithms demonstrate that for DBLP dataset, it works efficiently for retriev-

ing specific author publication records. Research work demonstrates that there is significant

improvement in performance as compared to existing techniques used for partitioning and

visualization of large graph.

Keywords: DBLP, large graph analysis, visualization, author publication record, solidity,

consistency.

v

Acknowledgement

I am grateful to Lord Ganesh for his special blessings that he has always been showering

on me.

It is an honor for me to thank those who made this research work possible. My first

debt of gratitude goes to my guide, worthy and esteemed mentor, Prof. (Dr.) Varsha

Hemant Patil for the valuable guidance, constructive suggestions, critical evaluation and

consistent encouragement in completing my thesis. Her advice, guidance, ideas, insights

and encouragement is instrumental in making this research work possible.

I render my deep sense of gratitude to respected Prof. (Dr.) Gajanan K. Kharate,

Principal, MCOERC without whom my dream would never come to reality. His constant

encouragement and constructive suggestions helped me a lot to make my dream come true.

Special thanks to the committee members Prof. (Dr.) Shirish S. Sane and Dr. R. S.

Tiwari for their valuable suggestions, which were instrumental in improving the quality of

the research.

I am also thankful to Prof. N. L. Bhale,, Dr. R.G. Tathed, Dr. J. J. Chopade and other

staff members of MCOERC, Nashik for their suggestions and support during this research

journey.

I am grateful to my parents, Late Krishna B. Bhavsar and Smt. Rajani Bhavsar, parents

in law, Mr. Prabhakar Wakde, Sou. Rukmini P. Wakde for their moral support and

blessings. My heartful thanks go to my husband, Avinash for his patience and understanding

and my son Mast. Gaurang who had missed many affectionate hours during this work.

Ms. Swati Krishna Bhavsar

vi

Table of Contents

Certificate i

Certificate of the Guide ii

Declaration by the Candidate iii

Abstract iv

Acknowledgement vi

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Large Graph . 1

1.1.1 Graph Partitioning . 2

1.1.2 Graph Visualization . 3

1.2 Motivation . 4

1.3 Research Statement and Objectives . 4

1.4 Research Contributions . 5

1.5 Organization of Thesis . 6

2 Literature Survey 7

2.1 Preliminaries of Graph . 7

2.2 Graph Mining . 12

2.3 Graph Clustering . 12

vii

2.3.1 Density Measures . 13

2.3.2 Cut Based Method . 13

2.4 Graph Classification . 13

2.4.1 Relational Approaches . 14

2.4.2 Kernel Method . 14

2.4.3 Random Walk . 14

2.4.4 Kernel Based Approach . 15

2.5 Sub-graph Mining Approach . 15

2.5.1 Candidate Generation . 15

2.5.2 A-Priori Based Algorithms . 16

2.6 Graph Partitioning Problem . 16

2.7 Thrust of Large Graph Analysis . 17

2.7.1 VLSI Circuit Design . 17

2.7.2 Authorship Network Analysis Significance of Authorship Network in

DBLP data . 19

2.8 Existing Algorithms for Graph Partitioning 19

2.8.1 Constructive Algorithm . 19

2.8.2 Refinement Algorithm . 23

2.8.3 Multilevel Technique . 27

2.9 Graph Visualization . 32

2.9.1 Graph Layouts . 32

2.9.2 Graph Visualization Techniques . 36

2.9.3 Visual Clutter Reduction . 36

2.9.4 Interaction and Navigation . 42

2.9.5 Focus +Context . 43

2.9.6 Animation . 44

2.10 Benchmark Datasets Available . 44

2.10.1 for VLSI Circuits and sparse matrix ordering 44

2.10.2 for Social Network Analysis . 45

2.11 Summary . 46

2.11.1 Research Gaps . 47

viii

3 Novel Algorithms for Analysis and Visualization of Large Graph 49

3.1 Overview . 49

3.1.1 Number of Partitions to be Generated 50

3.1.2 Selection of Vertices While Partitioning 51

3.1.3 Graph Visualization . 57

3.2 Efficient Partition Building and Cut set Computing Algorithm 58

3.2.1 Data Set Parsing . 59

3.2.2 Degree Computation and Vertex Ordering 59

3.2.3 Partition Generation . 60

3.2.4 Edge-cut Computation and Graph Visualization 62

3.3 Tool for Bibliographic Record Analysis . 63

3.3.1 DBLP Pre-processing . 65

3.3.2 DBLP Processing and Visualization 67

3.4 Novel Partitioning and Visualization Algorithms 72

3.4.1 Algorithm for Partition Building and Edge Cut Computation 72

3.4.2 Algorithm for Graph Visualization 76

3.4.3 Algorithm for Retrieval of Author and Co-Author Publication Details 77

3.4.4 Algorithm for Visualization of Publication Details and Interaction of

Author and Co-Author . 79

3.4.5 Algorithm for Computation of Performance Measure Parameters of

Author . 80

4 RESULTS 82

4.1 Experimental Setup . 82

4.1.1 Edge Cut Computation . 83

4.1.2 Visualization of Partitioned graphs 88

4.2 DBLP Bibliographic Record . 95

4.2.1 Partitioning of Publication Records 95

4.2.2 Author List generation . 98

4.2.3 Retrieve Publication Details of Author 99

4.2.4 Author and Co-author Hierarchy . 113

ix

4.2.5 Most Influential Author Retrieval . 114

5 Conclusions and Future Scope 120

5.1 Conclusions . 120

5.2 Future Scope . 122

Research Publications 122

References 125

x

List of Tables

3.1 Number of Desired Edge-cut and Obtained Edge-Cut 52

3.2 Number of Desired Edge-cuts and Obtained Edge-cuts after Refinement . . 56

3.3 List of Edge-cuts Obtained . 63

4.1 List of Bench Mark Graphs . 83

4.2 Number of Edge Cuts Computation . 84

4.3 Edge-cuts computation with 64-way Partitioning 87

4.4 Percentage Reduction in Edgecuts . 87

4.5 Quantums And Publication Records in Each Quantum 96

4.6 Time Computation for Graph Partitioning for DBLP dataset 97

4.7 Time computation for Graph Partitioning for Benchmark dataset 97

4.8 List of Authors and Their Active Spans . 98

4.9 Performance Measures of Authors . 106

4.10 Performance Measure of Co-Authors of Umeshwar Dayal 108

4.11 Performance Measures of Co-Authors of Meichun Hsu 113

xi

List of Figures

1.1 General Large Graph Example . 2

1.2 DBLP Large Graph Example . 2

2.1 Undirected Graph . 8

2.2 Directed Graph . 8

2.3 Hyper Graph G = (V, E) . 8

2.4 Simple Graph . 9

2.5 MultiGraph . 9

2.6 Weighted Graph . 10

2.7 Graph, Adjacency Matrix of Graph and Adjacency List of Graph 11

2.8 Molecular Graph With Label As Toxic . 13

2.9 Bi Partitioning . 17

2.10 K Partitioning . 17

2.11 An Example of Logic Circuit and Its Corresponding Hyper Graph 18

2.12 An Example of Hyper-Graph and Its Respective Matrix Representation . . . 18

2.13 Multilevel Bi Partitioning . 27

2.14 Multilevel K Partitioning . 27

2.15 Graph Coarsening Examples . 28

2.16 Graph Coarsening by Maximal Matching 29

2.17 Converting Coarse Partition into Fine Partition 30

2.18 Graph Layouts . 32

2.19 Classical Hierarchical View for A Moderate Large Tree 33

2.20 Radial View . 33

2.21 Balloon View . 33

xii

2.22 Tree + Link Layout . 34

2.23 Sun Burst Visualization of A File Directory 34

2.24 Tree Maps Views: Tree Maps View of A File Directory 35

2.25 Cone Tree Layout . 35

2.26 Matrix Views . 36

2.27 Graph Visualization Techniques . 36

2.28 An Example of Flow Map: Migration . 37

2.29 Confluent Drawing of Layered Drawings . 38

2.30 Example of hierarchical edge bundles: (a) and (b) show a balloon layout of

a Software system and its associated call relations and its bundled result. . 39

2.31 Example Of Edge Lens: (A) A Simple Radial Layout With Dense Edges. (B)

Edge- Lens Views with Color and Transparency Enhancement 39

2.32 Different Clustering Levels of the Same Graph 41

2.33 Clustered Graph Layouts: (A) Layered Layout (B) 3D Layout 41

3.1 Graph G1(V1, E1) . 55

3.2 Partitioned sub-graph G
′

1(V
′

1 , E
′

1) . 56

3.3 Partitioned sub-graph G
′′

1(V
′′

1 , E
′′

1) . 56

3.4 Partitioned sub graph G
′

3(V
′

3 , E
′

3) . 57

3.5 Partitioned sub graph G
′′

3(V
′′

3 , E
′′

3) . 57

3.6 Partitioned sub graph G
′

3(V
′

3 , E
′

3) . 58

3.7 Partitioned sub graph G
′′

3(V
′′

3 , E
′′

3) . 58

3.8 System Architecture for an Efficient Partitioning and Edge-cut Set Comput-

ing . 59

3.9 Partitioned sub-graph G
′

3(V
′

3 , E
′

3) . 63

3.10 Partitioned sub-graph G
′′

3(V
′′

3 , E
′′

3) . 63

3.11 Partitioned sub-graph G
′′′

3 (V
′′′

3 , E
′′′

3) . 63

3.12 System Architecture of Author Information Retrieval 64

3.13 System Architecture for Author Information Retrieval 66

3.14 Specified Author Representation in Each Partition 67

3.15 Author Publication Information Retrieval 68

xiii

4.1 Comparative Analysis of Edge Cuts Computation 84

4.2 Edge cuts Computation for 4ELT dataset . 85

4.3 Edge cuts Computation for BCSSTK31 dataset 85

4.4 Edge cuts Computation for BRACK2 dataset 86

4.5 Edge cuts Computation for ROTOR dataset 86

4.6 Percentage Reduction in edgecuts . 87

4.7 Graph Visualization of 4ELT Graph after Partitioning in 32 Partitions . . . 89

4.8 Visualization of 4ELT Subgraphs in 32 partitions 95

4.9 Record of Number of Publications From 1936 To 2017 96

4.10 Publication Record of Selected Author . 100

4.11 Publication Record of Selected Author . 101

4.12 Stability Graph of Umeshwar Dayal . 105

4.13 Publication Record of Selected Author: Meichun Hsu 109

4.14 Yearwise Publication of Selected Author: Meichun Hsu 110

4.15 Author and Co-Author Hierarchy . 114

4.16 10 Most Influential Authors Id of Span1991 - 1995 117

4.17 9 Most Influential Authors of Span 1986 - 1990 119

xiv

Chapter 1

Introduction

Partitioning and visualization of large graph are very useful tasks for analyzing complex

data sets like social networking sites, experimental devices and sensor networks. For the

research work undertaken, the topics covered in this chapter include introduction to large

graph, motivation, objectives and research contributions.

1.1 Large Graph

A graph is a set of vertices and edges. It is a general data structure that models peculiar

relationship among objects, where vertices are objects and relationships as edges. A large

graph is one which consists of hundreds to thousands of nodes and millions of edges [1].

Large graphs are popularly called colossal graphs. Some common examples of large graph

include Very Large Scale Integrations (VLSI) designs, telephone networks, social networking

sites, flight systems,medical applications, publication records among many more. For VLSI

designs, units on a chip are represented as vertices and wires connecting them as edges. In

the case of social networking sites, vertices represent web pages and edges represent links

among them. Similarly, for publication records, authors symbolize vertices and co-authors

symbolize edges. DBLP (Digital Bibliography and Library Project) is a dataset of authors

and co-authors relationships [45, 111]. Figure 1.1 shows an example of general graph and

figure 1.2 shows example of DBLP graph[120].

1

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 1.1: General Large Graph Example Figure 1.2: DBLP Large Graph Example

Large graphs are sizably voluminous graphs and those are commonly represented by

means of popular data structures - adjacency matrix and adjacency lists. Memory Require-

ment for storage of matrix is too high as compared to adjacency list. Dynamic updates in

nodes and edges are difficult operations especially in case of the adjacency matrix.

A large graph is an complex data structure and it requires excessive processing, higher

memory for storage and knowledge of patterns of the graph [2]. To find patterns in a large

graph, it is desirable to analyze, visualize, summarize and mine it [2]. Some of the graphs

that change with time are known as dynamic graphs. So it is very difficult to comment on

the exact size and pattern of such large and dynamic graphs. These large graphs cannot be

analyzed and visualized as a whole. There is a need to partition the large graph into smaller

subgraphs for effective analysis. Hence powerful graph partitioning along with graph visu-

alization are to be used while processing and analyzing large graphs efficiently.

Large graphs are viewed using graph visualization techniques. Cutting the graph into

smaller parts is one of the algorithmic operations, which is known as graph partitioning.

1.1.1 Graph Partitioning

If G = (V,E) is a graph, then graph partitioning is a process to divide vertex set V

into k parts (subsets) {v1, v2, ..., vk} such that the subsets are disjoint and are of equal

size, partitioning is balanced and the number of edges with endpoints in different subset is

minimized.

For analysis of graph, at a given time, it is very important to partition the sizably

voluminous graph into smaller subgraphs so that graph will fit into relatively less memory

without any information loss in terms of connectivity [3].

For partitioning a minimum number of edge cuts are desirable. Any edge that is cut in

2

Development of Novel Algorithms for Analysis and Visualization of Large Graph

order to partition a graph into smaller graphs can be called as cut-edge. Therefore, finding

the threshold value of an edge cut plays a paramount role in the processing and analysis of

large graphs [4].

1.1.2 Graph Visualization

The level of graph hierarchy by which graph can be seen is known as graph visualization.

Graph visualization is a representation of interconnected nodes arranged in space and its

representation in a particular structure so that user can understand it easily.

As the size of the graph is too large, it becomes one of the major challenges in efficient

graph visualization. Large graph can cause various difficult problem named as [8, 10]

algorithmic complexity, display clutter, readability and navigation.

i. Algorithmic Complexity: Graph size is vital to algorithms in some cases because a lot

of useful graph algorithms are either NP-complete or NP-hard. Therefore, some layout

algorithms can be totally unusable when facing graphs of a large size. Algorithms

require long processing time and make it hard to interact in real-time.

ii. Display Clutter: Large Graph contains thousands of vertices or more. When the size

of the data grows, graph becomes visually cluttered and confusing. It becomes difficult

for user to discriminate between nodes and edges.

iii. Readability: Human perception able to visualize only small for graphs including firstly

finding the node and secondly finding links between nodes.

iv. Navigation: Navigating large information spaces, such as graphs with thousands of

nodes suffer from the problem of viewing a large space on a small display.

The large graph analysis is performed with the help of an efficient partitioning and efficient

visualization. The large graph problem can be treated through graph hierarchies, according

to which a graph is recursively broken to define a tree of sets of partitions. For understanding

a graph hierarchy, some of the important terms used are as below-

• Hierarchical Navigation: It is the relation between arbitrary groups (partitions) of

nodes.

3

Development of Novel Algorithms for Analysis and Visualization of Large Graph

• Representation and Processing: Adjacencies of given graph nodes are computed in

consideration with an entire graph, instead of a particular partition [1].

• Mining: From a given subset of nodes in the graph, particular induced sub-graph that

best summarizes the relationships of these subsets are to be identified efficiently.

• Visualization: The levels of the graph hierarchy that are can be seen [7] [8].

• Interaction: It shows that how the above-mentioned tasks is efficiently and intuitively

performed.

1.2 Motivation

As a promising technology, large graph analysis received a lot of attention in recent years.

The concept of large graph analysis is simple to understand and has two important pa-

rameters viz graph partitioning and graph visualization. It has a tremendous amount of

applications in web graphs, social networks, recommendation systems, VLSI designing and

many similar ones [19]. Literature reveals that noticeable graph partitioning and visual-

ization algorithms were designed and developed by various researchers, but the minimum

numbers of edge-cuts are not ensured while partitioning moreover existing graph visualiza-

tion systems are application specific. Hence it is a need of the day to develop an efficient

system for graph partitioning and graph visualization that will ensure the minimum number

of edge-cuts while partitioning and will provide an efficient visualization of sub-graphs.

This motivates to carry out a theoretical analysis with mathematical properties con-

tributing to the development of novel partitioning algorithm.

1.3 Research Statement and Objectives

Statement for proposed research work is, To develop Novel Algorithms for Analysis and

Visualization of Large graphs. The objectives of proposed research work are-

1. To undergo thorough review of different partitioning and analysis techniques proposed

and implemented by various researchers.

4

Development of Novel Algorithms for Analysis and Visualization of Large Graph

2. To study various visualization and summarization techniques for large graph and

identify the potential research gaps.

3. To develop the algorithms for analysis and visualization for large graph.

4. To implement and test the proposed algorithms using available standard data set.

5. To compare the performance of proposed algorithms with techniques proposed by

researchers and validate the results.

1.4 Research Contributions

This research work focuses at reducing the number of edge cuts while partitioning the large

graph into subgraphs using a novel algorithm for analysis and visualization of graph. The

outcomes of research include:

• The novel algorithm “Cut-set and Partitioning Algorithm (CPA)” for graph

partitioning has been successfully designed and implemented.

o The numbers of edge cuts obtained by the proposed algorithm are significantly

less as compared to existing algorithms

o Number of subgraphs obtained as a result of partitioning requires relative less

memory for storage.

• “An Effective Visualization tool” is developed for visualization of partitioned

sub-graphs.

o Visualization tool is capable of efficient dynamic visualization of 128 sub-graphs

obtained after partitioning a large graph.

o Visualization tool efficiently visualizes author and co-authors relationship for

DBLP publication records. This visualization tool will be useful for visualizing

many complex data sets.

• Design and implemented, An Author Publication Information Retrieval Algorithm for

retrieving authors publication details from DBLP dataset.

o The system works efficiently for DBLP dataset for retrieving authors publica-

tion information along with its all co-authors and their association.

5

Development of Novel Algorithms for Analysis and Visualization of Large Graph

o When selected one of the co-authors to visualize association, the co-author

node becomes main author node and can be browse through and continue.

o Authors performance is measured by designing several parameters like consis-

tency and contribution factor and retrieval and visualization of n most influential

authors from a specified span of years along with parameters proposed by Forcoa.

Net like stability, cooperativeness and solidity.

1.5 Organization of Thesis

Graph Analysis and Visualization system is designed, implemented and tested for standard

graph dataset. The rest of the thesis is organized as follows. Chapter 2 is a review of previous

related work, detailed process of graph mining including graph classification and clustering.

It also contains survey of graph partitioning algorithms and graph visualizations tools.

Chapter 3 provides details of our framework for development of partitioning algorithm and

visualization tool. It also discusses the design of DBLP processing and visualization system

for visualization of a large graph. Chapter 4 includes an evaluation of graph partitioning

algorithms for computation of number of edge-cuts and subgraph visualization. Chapter 5

provides a summary of the salient points of the thesis, and directions for further research.

6

Chapter 2

Literature Survey

A significant development in graph analysis and visualization has been seen in the last two

decades, and an over abundance of literature in the form of journals, transaction papers,

patents, reviews, and surveys is available. To provide an overall idea of the domain, the main

stages in graph partitioning and visualization along with relevant literature are described

in subsequent sections.

2.1 Preliminaries of Graph

• Graph: A graph G(V, E) where V is the set of vertices, E is the set of edges and the

number of vertices n = |V|.

• Cyclic Graph: If a graph contains a cycle means a simple path that begins and ends

with the same vertex is known as a cyclic graph. If a graph that contains no cycle

then it is known as acyclic. An acyclic graph may be called as a tree and a set of tree

forms a forest.

• Sparse Graph / Dense Graph: A Sparse graph is a graph in which the numbers of

edges are close to the minimal number of edges while the dense graph is a graph in

which a number of edges are close to the maximal number of edges.

• Directed and Undirected Graph: For given graph G(V,E), the graph is undirected if

(v, w)ǫE ⇔ (w, v)ǫE graph as shown in figure 2.1, otherwise the graph is un directed

7

Development of Novel Algorithms for Analysis and Visualization of Large Graph

if (v, w)ǫE 6= (w, v)ǫE. Directed graph is as shown in figure 2.1 and undirected graph

is as shown in figure 2.2.

Figure 2.1: Undirected Graph

Figure 2.2: Directed Graph

• Static / Dynamic: Static graph consists of a fixed number of nodes and edges. In

a dynamic graph, insertion and deletion of edges and vertices are performed at any

time.

• Hyper graph: A hyper graph is a generalization of a graph in which an edge can join

any number of vertices. Formally, a hyper graph is a pair where a set of elements

is called nodes or vertices and is a set of non-empty subsets called hyper-edges or

edges.An example of hypergraph is shown in figure 2.3[65].

Figure 2.3: Hyper Graph G = (V, E)

8

Development of Novel Algorithms for Analysis and Visualization of Large Graph

V = {v1, v2, v3, v4, v5, v6, v7}

E = {e1, e2, e3, e4} = {{v1, v2, v3}, {v2, v3}, {v3, v5, v6}, {v4}}

• Adjacent Vertices and Edges, Incident Edges: Let G = (V, E) be an undirected graph.

If e (v, w) ∈ E, then v and w are said to be adjacent vertices of e and an edge e is

said to be an edge incident on v, w. Two edges e1 and e2 are said to be incident if

they are incident on same vertex.

• Simple and multi graph: A graph G = (V, E) is simple if it does not have loops

and/or more than one edge incident on the same vertex. Otherwise if more than one

edge incident on the same vertex then the graph is known as a multi-graph.

Figure 2.4: Simple Graph
Figure 2.5: MultiGraph

Figure 2.4 shows a simple graph whereas figure 2.5 shows multi-graph with edges e2,

and e4 are incident on vertices v2 and v3.

• Degree of vertex: Let G = (V,E) be undirected graph and v ∈ V , degree of v is the

number of edges incident to the vertex, with loops counted twice.

• Loops and Parallel Edges: An edge is a loop if both ends of an edge are incident on

the same vertex. If the same pair of vertices is adjacent by two or more edges, then

those edges are called as parallel edges.

• Weighted Graph: It is a graph in which each edge is given a positive value as a

numerical weight.

9

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 2.6: Weighted Graph

For all weighted graph, a degree of vertex v is an addition of weights of all edges incident

on v. Figure 2.6[68] shows an example of a weighted graph.

• Degree Matrix: Degree matrix is a diagonal matrix which contains information about

the degree of each vertex.

di,j =

deg(vi) ifi = j

0 otherwise

(2.1)

• Adjacency Matrix: Let G = (V,E) be simple graph on v vertices then adjacency

matrix A is of order vxv ∀ (i, j) ∈ (1,2,....v)2

Aij =

0 ifi = j

w(i, j) otherwise

(2.2)

10

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 2.7: Graph, Adjacency Matrix of Graph and Adjacency List of Graph

Figure 2.7 shows an input graph, its adjacency matrix representation and adjacency list

respectively[68].

• Laplacian Matrix: Let G = (V,E) be a graph, then the matrix L = D − A is called as

Laplacian matrix, where D is degree matrix and A is the adjacency matrix.

• Path and Circuit in Graph: Let G = (V,E) be a graph and v1, v2 be nodes in a graph. If

there is a sequence of edges from v1 to v2 then there is a path from v1 to v2. The path is

called as circuit if the start and end vertex is same.

• Connected Graph: Let G = (V,E) be a connected graph if there is path exist between every

pair of vertices.

• Matching of Graph: Let G = (V,E) be a graph. Set containing pairwise non-adjacent edges

are called a matching of graph. Maximal matching includes the highest possible number of

edges.

• Cut: A cut performs partitioning of graph into two subsets A and B. The cut-set of a cut

is the set of edges that have one endpoint in A and the other endpoint in B. If v1 and v2

are specified vertices of the graph G, then v1-v2 is a cut in which v1 belongs to the set A

and v2 belongs to the set B.

• Hypergraph Partitioning: It is the process of partitioning of hypergraph in such a way that

the net cut, a cost function is minimized. Even it is expected that solution has to satisfy

balanced constrained and then a process is called balanced hypergraph partitioning.

11

Development of Novel Algorithms for Analysis and Visualization of Large Graph

2.2 Graph Mining

Since last decade, various researchers are working on data mining for enhancing the per-

formance of information retrieval. If information is stored in the form of structured data,

where a structure of data is represented by means of graph and has the relationship among

the data then it is called as graph mining. Graph mining is used to discover the information

from graph data [1]. Graph mining is a process of obtaining desired subgraphs from the

graph. It has many applications such as Social Network Analysis, Designing Computer Net-

works, Chemical Reactions, Bio-Informatics, Program Flow Structures, Image Processing,

Enterprise data, Chemical Reactions and Sparse Matrix ordering [2].

The graph mining techniques are categorized into Graph clustering, Graph classification,

and Subgraph mining.

- Graph Clustering: Graph vertices are grouped together to form clusters based on the

edge structure of the graph is known as graph clustering. The care has been taken while

forming the structure such that the inter-cluster edges may be more but intra-cluster

edges should be less [12]. Graph clusters are formed based on some similarities in graph

structures.

- Graph Classification: The graph is classified into separate graphs using supervised/semi-

supervised learning technique where classes of the data are unknown in prior known as

graph classification [2, 13].

- Sub-graph Mining: The frequent sub-graph mining is used to produce the set of sub-

graphs depending on a threshold value[16]. Sub-graph is a graph whose vertices and

edges are subsets of another graph.

2.3 Graph Clustering

In graph clustering process, the graph is divided into clusters by considering important

property as cluster fitness measure. Cluster fitness measure is used to decide the quality of

the cluster with two measuring parameters such as density measures and cut based methods.

12

Development of Novel Algorithms for Analysis and Visualization of Large Graph

2.3.1 Density Measures

In this technique, the density of a graph is computed based on the threshold value and

based on the threshold value, maximal sub-graphs are searched [14].

2.3.2 Cut Based Method

In addition to direct density measures, connectivity measures with the rest of the graph are

used to identify high-quality clusters. Measures of the independence’ of a sub graph of the

rest of the graph have been defined based on cut sizes. Possibly the most important such

measure in the context of clustering is conductance which leads to the graph partitioning

[15]. The problem is to partition the vertices of a graph into equal parts such that the

number of cuts should be minimized. The graph partitioning problem is NP-Complete.

2.4 Graph Classification

In general, graph classification is defined as task of assigning a discrete class label set Y to

input instances in an input space X . suppose molecular structure is considered, then X =

{valid molecular structures} and Y = {toxic, non-toxic}. The graph structure as shown in

figure 2.8 considered as toxic, then each full graph is assigned a class label and based on

the label, classification is performed as toxic or non-toxic[28].

Figure 2.8: Molecular Graph With Label As Toxic

The Classification approaches of the graph are classified into relational approaches,

kernel method, random walks and Local Approaches [22].

13

Development of Novel Algorithms for Analysis and Visualization of Large Graph

2.4.1 Relational Approaches

Almost all real-world data are stored by using the relational database; therefore, the re-

lational approach is used to classify the objects in one relation. Multi-relational classifi-

cation classifies an object using multiple relations. Multi-relational classification is used

to discover useful patterns across multiple relations who are stored in tables [104]. As a

multi-relational approach is based on the traditional machine learning approach, it collects

the random sample of homogeneous data from the single relation. As the real world data

is based on multi-relational and heterogeneous data. This solution cannot be realistically

applied for it [112].

2.4.2 Kernel Method

Kernel method is useful for graph classification. It is based on machine learning and data

mining communities. Support Vector Machine(SVM) supports kernel method and uses

kernel function and eigenvalues. Direct product kernel matrix is computed for all pairs of

graphs. This matrix is used as input to SVM function to create the classification model.

For creating kernel matrix, several assumptions are used as- K is positive definite if and

only if K has only non-negative eigenvalues and K is strictly positive definite if and only if

K has only positive eigenvalues, that is no zero eigen-values[20].

2.4.3 Random Walk

Random Walk is based on the Markov Chain model. Dy is a random walk starting in a

labelled node and ending when any node having the same labels which is reached for the

first time. D-walk betweenness B(q, y) is the expected passage time on an unlabeled node

for each class[16]. The D walks have an ability to classify directed and undirected graphs.

Its Complexity is linear with respect to -

1. Number of edges in the graph

2. Maximum walk length

3. Number of classes

14

Development of Novel Algorithms for Analysis and Visualization of Large Graph

This technique has been tested on the CORA database. The experimentation shows

that it classifies the unlabeled nodes of the graphs and performs better than the techniques

available in the literature such as [17] and [18]. Their main attainment is towards handling

the graphs of large a number of nodes and edges.

2.4.4 Kernel Based Approach

Another approach for graph classification is a kernel-based approach which can handle

extremely large no of nodes and edges [20]. It is based on the concept of the inner product

of two graphs where nodes of graphs and labels of edges are considered for inner products.

If two graphs similarities are identical, then they are classified into the same group. It

has been implemented for the prediction of properties of the chemical compound using the

mutag and PTC dataset.

2.5 Sub-graph Mining Approach

Frequent sub-graphs are beneficial for graph classification, clustering, and characterization

of graph sets. As the sub-graph size decreases, the graph pattern size increases exponentially.

It may lead to issue of identification of sub-graphs may take more time. This issue can be

solved by using scalable algorithms recommended which generate frequent sub-graphs in

search space [46-54]. The approaches used for sub-graph discovery are candidate generation

and a- priori based algorithms.

2.5.1 Candidate Generation

It is one of the important phase in frequent sub-graph mining in which candidate sub-graphs

are systematically generated. Some of the strategies which identify candidate sub-graphs

are listed below:

1. Level- wise Join: Two sub-graphs of size m are combined together to form a (m+ 1)

candidate sub-graph.

2. Rightmost path extension: In this candidate generation strategy, vertices are added on

the rightmost path of m-sub tree to form (m+1) sub tree. And other strategies such

15

Development of Novel Algorithms for Analysis and Visualization of Large Graph

as extension and join, right-and-left tree join and equivalence class based extension

are also used in candidate generation phase.

2.5.2 A-Priori Based Algorithms

A-Priori based approach is similar to frequent item-set mining and it works recursively [49].

Some of the a-priori based frequent sub-graph mining algorithms are listed below.

- AGM[48]: This algorithm generates candidate graphs, merges any two candidate graphs.

It checks whether a resultant graph is a sub-graph in a given graph. Two graphs of size

m are merged together to form a resultant graph of size m+1. One of the more resultant

graphs of size m+1 again fed to a-priori algorithm to obtain as an m+2. As two graphs

are merged together, graph size is increased by one vertex, hence it is called as vertex

based candidate generation algorithm.

- FSG[49]: This method is based on the edge based candidate generation process. The

number of edges in a graph represents the size of a graph. Similar to vertex based

candidate generation method, two graphs of size m are merged together to form the

resultant graph of size m+ 1 which must be frequent. In further iterations, it generates

candidate sub-graph whose size is exactly greater than 1 of previous ones.

- Edge disjoint path-join algorithm[50]: It measures the number of disjoint paths of a graph.

A path is said to be disjoint if it does not share a common edge. Two candidate graphs of

m disjoint paths are merged together to form a resultant graph containing m+1 disjoint

paths.

2.6 Graph Partitioning Problem

If G = (V,E) is unwieghted undirected graph,then Graph Partitioning Problem(GPP) is to

divide vertex set V into k parts (subsets) {v1, v2, ..., vk} such that the subsets are disjoint and

have equal size, partition is balanced and the number of edges with endpoints in different

subsets is minimized. Partitioning graph into distinct sub graphs of approximately same

size with the objective of minimizing cut value is NP complete problem.

16

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Basic graph partitioning algorithms are based on bi-partitioning of graph and further-

more generalized to kpartitioning. figure 2.9 shows bipartitioning of a graph and figure 2.10

shows k partitioning[68].

Figure 2.9: Bi Partitioning Figure 2.10: K Partitioning

2.7 Thrust of Large Graph Analysis

From the preliminaries of graph discussed earlier, for large graph, graph analysis is per-

formed by applying graph partitioning means by dividing the large graph into subgraphs to

fit into limited memory and to apply parallelism for the assignment of multiple processors.

There is several thrust areas graph analysis. Some of them are discussed as-

2.7.1 VLSI Circuit Design

Very Large Scale Integration consists of the creation of integrated circuits. It is composed of

thousands of transistor on a single chip. These are used to perform one or many operations

at a time. The circuit design is transformed into the physical circuit. These interactions are

in terms of physical wires. It increases circuit size, cost and power usage. Partitioning is

used in the circuit design to handle the issue of complexity of designing VLSI, to divide the

system into smaller and manageable components. It plays a major role towards improving

system performance. In electronics, propagation delay is the time between input and output

state becomes stale and valid. Wires have a delay of 1 ns for 15cm of length and logic gates

are in picoseconds. In a circuit, the wire connects more than two components; it needs

representation of graph using hyper-graphs where every wire is represented by a hyper

edge.

17

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 2.11: An Example of Logic Circuit and Its Corresponding Hyper Graph

Figure 2.11 shows logic circuit and its corresponding hyper-graph. The Logic circuit is

composed of gates called as standard cells which are connected through metal wires. When

electrical signal propagate through it, such a connection is called a net. To construct a

hyper-graph from it, gates are considered as vertices and nets as hyper edges. This graph

is represented by a matrix [58]. Hyper-graph is transformed into the pattern of non zero

entries of matrix A Vertices corresponds to the column of A and hyper edges corresponds

to rows of A. Each hyper edge e will be connected to A vertex v, if Ae,v 6= 0 as shown in

figure 2.11

Figure 2.12: An Example of Hyper-Graph and Its Respective Matrix Representation

Figure 2.12 shows an example of hyper-graph and its corresponding matrix representa-

tion[58]. There is a need for partitioning of such a hyper-graph with the minimum number

18

Development of Novel Algorithms for Analysis and Visualization of Large Graph

of edge cut value to parallel assign the task of the circuit design with minimum loss of

information.

2.7.2 Authorship Network Analysis Significance of Authorship

Network in DBLP data

DBLP dataset keeps track of approximately 9, 13, 534 authors and their IEEE, ACM

journals and conference publication in computer Engineering. Using the information about

authors and their papers cooperation with co-authors can be represented. This maintains

the relationship between authors and co-authors in association with various parameters as

article key, mdate, co-author, title, pages, year, volume, Journal, and number. All this

information needs to visualize by using the visualization tool. As it is a huge data, it is

time and memory consuming task to load it at the time of visualization. Therefore need

to preprocess and partition the data for retrieving particular authors information and to

measure the performance of author [59].

2.8 Existing Algorithms for Graph Partitioning

Graph partitioning algorithms are mainly classified into constructive algorithms and refine-

ment algorithms.

2.8.1 Constructive Algorithm

A constructive algorithm is a heuristic type method [28]. It starts with an empty solution

and repeatedly extends the current solution until a complete solution is obtained. Examples

of some constructive heuristics developed for famous problems are: flow shop scheduling and

vehicle routing problem. Different types of constructive algorithms are an exact algorithm,

random partitions, spectral bisection methods, greedy construction, and graph growing

partition algorithm.

19

Development of Novel Algorithms for Analysis and Visualization of Large Graph

2.8.1.1 Exact Algorithm

GPP problem can be solved by applying branch and bound techniques. Bounds are de-

termined by using semi definite programming [21], multi commodity flow [23] and linear

programming [24]

Hanger et al. applied branch and bound technique to Graph Partitioning Problem in

the continuous quadratic form [25]. Furthermore, Delling et. al [26] had derived bounds by

computing minimum s−t cut between vertices(v1, v2) such that v1∩v2 = ∅. This method is

used for partitioning of complex road network having millions of nodes. But the limitation

of this method its running time is more. Running time is dependent on the bisection width

of graph.

All these methods are used in solving small size graph partitioning problem and hav-

ing large running time. Modified Lanczos algorithm can be used to compute eigen-vector

with respect to second smallest eigen-value but it also has high running time. This method

produces good partitions but the drawback is it can partition graph only into 2k blocks.

2.8.1.2 Random Partition

This method of partitioning is applied to small graphs, such as coarsened graphs, which

are used in multilevel partitioning. This algorithm is easy for implementation and its time

complexity is O (n). But it produces poor solution towards finding edge cut value. The

number of edge cuts produced is lot greater than best known cuts.

2.8.1.3 Spectral bisection method

It is one of the excellent partitioning techniques used to divide graph into sub-graphs [27].

In this method, global information about the associability of the graph is maintained by

computing the laplacian matrix with its eigen-values. The steps of the algorithm are as

follows.

20

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Algorithm 1 Spectral bisection

For every Graph G = V,E

1: Represent Adjacency Matrix Aij

2: Compute Degree Matrix D

3: Compute Laplacian Matrix L = D - Aij

4: Eigen values(λ) of L gives a lower bound of optimal cost C of partition

5: Eigen Vector (V) corresponding to λ, called as Fiedler Vector.

6: Determine Median of V

7: For each node u1 of G if ui

8: It bisects the graph into two sub graphs based on the sign of corresponding vector
entry.

9: Set up graph G1 = V1, E1 and G2 = V2, E2

2.8.1.4 Greedy Construction

Greedy construction algorithm is one of the constructive heuristic algorithms. Detailed

algorithm is explained in algorithm 2.

21

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Algorithm 2 Greedy Constructive Procedure

Input: Graph G = (V, E) desired size k of partition
Output: k partition of V

1: P ← P0,, Pk−1

2: V
′

← V

3: for p ∈ [0, k-1] do

4: u ← random vertex from V
′

5: Pp ← \ {u}

6: V
′

← V
′

{u}

7: p ← 0

8: While | v
′

| > 0 do

9: b ← greedyfunction(V
′

, P, p, G)

10: Pp ← Pp ∪ {b}

11: V
′

← V
′

\ {b}

Initially, all partitions are empty, k different random vertices are also known as seed

vertices are assigned to those empty partitions. Remaining vertices are greedily assigned to

each partition in a circular fashion. Total n-k iterations are performed. Greedy function is

used to build k way initial partitions [68].

This algorithm is specifically based on the selection of seeds. If bad seeds are chosen,

then leads to a problem of poor quality in terms of finding number of edge cut value.

2.8.1.5 Graph Growing Partition Algorithm

This is the heuristic graph partition construction algorithm based on greedy function. It

performs k iterations. Each iteration selects a random vertex and grows around it. It is

based on depth-first search procedure and checks for n/k vertices are added to particular

partition [68].

This algorithm requires a lesser number of iterations as compared to greedy partitioning

algorithm, but it suffers from the same problem of poor quality partitions with chosen of

bad seeds.

22

Development of Novel Algorithms for Analysis and Visualization of Large Graph

2.8.2 Refinement Algorithm

A balanced bipartition A,B is achieved by swapping subsets X ǫ A and Y ǫ B with | X |=|

Y | to opposite sides so that cut size is reduced. One of the best refinement algorithms is

Kernighan Lin Algorithm [69]. Furthermore, it is replaced with Fiduccia and Mattheyeses

algorithm [70]. It uses the bucket data structure leads to reduce time complexity from O

(n2) from O(m).

2.8.2.1 Kernighan Lin Refinement Algorithm

Kernighan and Lin proposed KL- local search and iterative method to perform graph

partitioning. The input to the algorithm is an undirected graph G = (V,E) with vertex

set V , edge set E, and may have numerical weights on the edges in E. If the graph is a

weighted graph, then its weight is considered and if it is unwieghted graph, then unique

weight is considered for computation. The goal of the algorithm is to partition V into

two disjoint subsets X and Y of equal (or nearly equal) size, in such a way that it should

minimize the sum T of the weights of the subset of edges that cross from X to Y . [69].

Algorithms start with any partition of V (G) into X and Y . The algorithm maintains and

improves a partition in each pass by using a greedy algorithm to pair up vertices of A with

vertices of B in such a way that moving the paired vertices from one side of the partition

to the other will improve the partition. Swapping of vertices in two different subsets helps

to decrease the edge cuts obtained. The algorithmic steps are based on basic computations

of cost and gains are discussed below.

• Internal Cost: It is the cost of edges connecting node vi within its own group. Internal

cost of vertex vi ∈ X is the addition of edge weights of adjacent vertices of vi in the

same partition that is X only. Likewise, for each node, the internal cost is computed.

I(Vi)=
∑

Vj∈X
w (vi, vj) (2.3)

• External Cost- It is cost of edges connecting node vi within other group. External

cost of vertex vi ∈ X is the addition of edge weights of adjacent vertices of vi in other

23

Development of Novel Algorithms for Analysis and Visualization of Large Graph

partition that is Y only. Likewise, for each node, an external cost is computed.

E(Vi)=
∑

Vj∈B
w(vi, vj) (2.4)

- The difference between External cost and internal cost for each vertex where vi

V is known as the variation of cost computed as

G(vi)=E(vi) - I(vi) (2.5)

- If vertices v1 and v2 are exchanged, then their gain are computed by using

formula

g(v1, v2)= G(v1) + G(v2)- 2w(v1, v2)) (2.6)

- Then swap the pair of vertices for which gain value is maximum

- if v1 and v2 are interchanged, then mark them as locked vertices

- for all such unlocked vertices from both divided sets excluding v1 and v2 , update

the gain values by formula

g
′

(vi) = g(vi) + 2w(vi, v1)− 2w(vi, v2), ∀vi ∈ x− {v1} (2.7)

g
′

(vj) = g(vj) + 2w(vj, v2)− 2w(vj, v1), ∀vj ∈ x− {v2} (2.8)

- Repeat above procedure, if no more vertices are to swap.

If an initial partition is good, then KL algorithm is more efficient and faster. The

complexity of this algorithm is O (|E|2 log|E|). Algorithm 3 gives major steps of Kernighan

Lin algorithm.

24

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Algorithm 3 A Heuristic Kernighan Lin Procedure

Kernighan-Lin (G (V, E))

1: Determine a balanced initial partition of the nodes into sets X and Y

2: do

3: compute G values for all V1 in X and V2 in Y

4: Let gv, av and bv are empty lists

5: for (n := 1 to | V |/2)

6: find V1 from X and V2 from Y, such that g = G[V1] + G[V2] - 2*W(v1, v2) is maximal

7: remove V1 and V1 from further consideration in this pass

8: add g to gv, a to av, and b to bv

9: update G values for the elements of X = X \ v1 and Y= Y \ v2

10: end for

11: find k which maximizes gmax, the sum of gv[1],...,gv[k]

12: if (gmax > 0) then

13: Exchange av[1],av[2],...,av[k] with bv[1],bv[2],...,bv[k]

14: until (gmax ≤ 0)

15: return G(V,E)

The limitations of Kernighan Lin algorithm are in terms of time complexity and cut size.

Time complexity is O (n2) and unable to minimize cut size for imbalance structure of the

graph. These parameters improvement is proposed by Fiduccia Mattheyses (FM) heuristic

algorithm in which time complexity is reduced to O (m) and also deals with imbalanced

partition by moving single vertex instead of swapping two of them.

2.8.2.2 Fiduccia- Mattheyes Heuristic

The Fiduccia-Mattheyses (FM) heuristic is beneficial for hyper-graph bi-partitioning. This

is an iterative algorithm type developed with an aim of reducing net-cut costs. It works

on the same principle of KL Heuristic; starts with random solution and sequence of moves

are organized as passes. Differs from KL is that instead of moving the pair of vertices,

each time single vertex is moved across the cut in a single move. It can handle unbalanced

partition as well for which a balance factor is introduced. A special data structure known

25

Development of Novel Algorithms for Analysis and Visualization of Large Graph

as the bucket is used to select vertices to be moved across the cut to improve running time.

Each possible move can cause a change in cost known as gain. A move with the highest

gain is selected and executed. For the selected vertex with the highest gain, it is locked

with consideration to the value of gain. After successful execution of the move vertex, it

leads to change in gains of adjacent vertices, and their gains are updated. Selection and

execution of best gain move, gain update are repeated until every vertex is locked. Then

best solution seen during the pass is adopted as starting solution of the next pass. The

algorithm terminates when a pass-fail to improve solution quality. All moves with the same

gain are stored in a linked list representing a gain bucket [70].

Algorithm 4 Heuristic Fiduccia- Mattheyes Procedure

Input: A hyper graph with a vertex (cell) set and a hyper edge (net) set
Output: 2 partitions

1: n(i): ♯ of cells in Net i; e.g., n(1) = 4

2: s(i): size of Cell i

3: p(i): ♯ of pins of Cell i; e.g., p(1) = 4

4: C: total ♯ of cells; e.g., C = 13

5: N: total ♯ of nets; e.g., N= 4

6: P: total ♯ of pins; P= p(1) + + p(C) = n(1) + + n(N)

7: Area ratio r, 0 < r < 1

8: Cutsetsize is minimized by FMpass (gain container, partitionment)

9: solution cost = partitionment.get cost();

10: while(not all vertices locked)

11: move = choose move();

12: solution cost ± gain container.get gain(move);

13: gain container.lock vertex(move.vertex());

14: gain update(move);

15: partitionment.apply(move);

16: roll back partitionment to best seen solution;

17: gain container.unlock all();

26

Development of Novel Algorithms for Analysis and Visualization of Large Graph

2.8.3 Multilevel Technique

Barnard et al have introduced multilevel graph partitioning technique. This technique helps

in accelerating existing graph partitioning tools. The main idea behind this algorithm is

to group vertices together in order to deal with groups of vertices instead of processing on

independent vertices in case of partitioning of the larger graph in k parts[91]. The Multilevel

method is divided into following three steps in consideration with a weighted graph G0 =

(V0, E0)

Coarsening Phase: The graph G0 is reduced into a sequence of smaller graphs G0, G1

... Gm such that | v0 |>| v1 |>| v2 |> >| vm |. Random matching method is used for

collapsing of vertices and to form a multi node.

Partitioning Phase: A 2-way partition pm of the graph Gm = (Vm, Em) is computed that

partitions Vm into two parts, each containing half the vertices of G0.

Uncoarsening Phase: The partition Pm of Gm is projected back to G0 by going through

intermediate partitions Pm1, Pm2. . . P1, P0.

Multilevel bi-partitioning is shown in figure 2.13 and multilevel k-partitioning is shown in

figure 2.14[91]. Coarsening deals with providing a global outline of a graph. Partitioning

phase deals with partitioning of the original graph. Uncoarsening phase improves partition

by preserving the fine structure of partition.

Figure 2.13: Multilevel Bi Partitioning Figure 2.14: Multilevel K Partitioning

2.8.3.1 Graph Coarsening

It is an iterative method. Suppose Graph Gi has a set of vertices vi are grouped together

to form a single vertex v for the next level graph Gi+1. Vertex v is known as multi-node.

V v
i is the set of vertices of Gi which are grouped together to form v of Gi+1.

27

Development of Novel Algorithms for Analysis and Visualization of Large Graph

W (v) =| (Viv) (2.9)

The cut value of partitions in coarsen graph is the same as that of cut value for the

partition in the original graph. Graph Coarsening can be performed in two ways. One

is known as random matching and clubbing of matched vertices into a multimode. An-

other approach is based on the clustering phenomenon in which highly connected vertices

generates multimode.

Figure 2.15: Graph Coarsening Examples

Matching is defined as a set of edges, in which no two edges are incident on the same

vertex. Graph Gi is transformed into Gi+1 by coarsening phase in which vertices to be

matched are collapsed together to form a multi-node. When the vertices are collapsed,

the size of the original graph is reduced. If the matching is of maximum size, then it is

called a maximal matching.Example of maximal matching is shown on figure 2.16[91].

The size of maximal matching is different based on the matchings calculated. This maxi-

mal matching is useful in coarsening phase. The Complexity of all these schemes is O (| E |).

28

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 2.16: Graph Coarsening by Maximal Matching

Random Matching

The Randomized algorithm helps for generating maximal matching and more efficiently.

The Major assumption is vertices are visited in random order including the following steps.

- Consider a graph G(V,E) where a vertex u has not been matched yet for any of its

unmatched adjacent vertex is selected randomly

- If such a vertex v exists, then edge (u, v) is included in the matching and mark vertex u

and v is being matched

- If there is no unmatched adjacent vertex v, then vertex u, remains unmatched in the

random matching

Heavy Edge Matching (HEM)

This technique is much similar as of maximal matching but uses weights of the graph. The

main objective of HEM is to find maximal matching of the graph in addition to minimization

of edge cut. In this technique, the vertices are selected in random order. Instead of randomly

matching a vertex u with one of its adjacent unmatched vertices, match u with the vertex

v such that the weight of edge (u, v) is maximum.

2.8.3.2 Graph Partitioning

A two-way partition Pm of the graph Gm = (Pm, Em) is computed which partitions Vm into

two parts, each containing half the vertices of G0. There are various algorithms available

for graph partitioning; some of them are spectral bisection [30-32], geometric bisection [33],

29

Development of Novel Algorithms for Analysis and Visualization of Large Graph

and combinational methods [34-36]. Karpys and Kumar developed three algorithms for

partitioning of the coarser graph. These are spectral bisection [38], graph-growing heuristic

(GGP) which randomly selects a vertex v and grows in a breadth-first manner until half

of the vertex weight has been integrated. Another is the second graph-growing heuristic

(GGGP) which also randomly select a vertex v and includes only those vertices whose

inclusion lead to the smaller increase in edge cut. As these both techniques reside on the

selection of vertex v, different vertex v is selected, partitions are computed starting from

selected vertices and best is used as initial partition [38].

Figure 2.17: Converting Coarse Partition into Fine Partition

2.8.3.3 Graph Uncoarsening and Refinement

In uncoarsening phase, the partition of the coarsen graph (Pm) is projected back to the

original graph, G0 by going through intermediate partitions Pm−1, Pm−2... P1, P0. While

projecting back, it maintains the sum of vertex weight in each set. Refinement algorithm

selects two subsets of vertices, one from each part such that when swapped resulting parti-

tion has smaller edge cut. If X and Y are two parts of bi-sections, a refinement algorithm

selects XǫX and Y ǫY such that X \ X ∪ Y and Y \ Y ∪X .

Based on the above mentioned portioning algorithms, various researchers worked on

these algorithms to summarize few are Chao Wei Ou and Sanjay Ranka have suggested

Parallel Incremental Graph Partitioning using Linear Programming [39].It is used to exe-

cute several scientific and engineering applications parallel. It requires partitioning of data

among processors to balance the computational load on each node with minimum com-

munication overhead. There are many algorithms like geometric, structural, Spectral and

refinement algorithms are proposed for achieving parallel graph partitioning.

30

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Researcher Stephen Barnard and et.al has suggested the fast multilevel implementation

of recursive spectral bisection for partitioning unstructured problems which are used for

the partitioning of the graph. It finds application for dynamic graph too. The Dynamic

graph is a graph which changes over time that is a small number of nodes or edges may be

added or deleted at any given instant. The drawback of the method is the initial partition

is to be calculated using a linear programming based bisection method [40]. The Proposed

approach focuses on uniform partitions creation with no loss of information.

Researcher Inderjit S. Dhillon and et al. has described an equivalence between the objec-

tive functions and high-quality multilevel algorithm that optimizes various weighted graph

clustering objectives such as ratio cut, normalized cut and ratio association criteria [5].

Mahmudur Rahman and et al. discusses and efficient graphlet counting method for large

graph analysis, which computes the cost for obtaining the frequency of each graphlet in the

network [6]. Also, the local topological structure is considered for the computation of the

Graph Frequency Distribution (GFD).

Vladimir Batagelj and et al. described (X, Y) - clustering and Hybrid visualizations

technique for visual analysis of large graphs. In (X,Y) clustering the two important proper-

ties like intra-cluster and inter-cluster were used for topological graph [7]. By using hybrid

visualizations clusters were able to explore the clusters without losing their mental map.

Jose F. Rodrigues and et. al had discussed Large Graph Analysis in the GMine System

for the clutter reduction in the graph which is based on graph representation as hierarchies

of partition by using concept of super-graph and sub-graph. And graph summarization is

performed using Center Piece summarization. Their main contribution is towards the large

graph investigation in terms of locally and globally [1].

Liu and et. al. Provided Social Network Analysis, co-authorship networks and their

combination[109].He mainly contributed for computing page rank, authors Rank and some

coefficients of an author.

Han and et. al. Performed analysis of DBLP dataset to find the supportiveness of au-

thor[110]. Value of supportiveness is based on co-authorship ties in a non-symmetric ways.

Zdenek Horak and et al. developed FORCOA.net as an interactive tool for exploring

the significance of authorship network in DBLP data [111]. This tool mainly focuses on

analysis and visualization of the co-authorship relationship based on their joint publication

31

Development of Novel Algorithms for Analysis and Visualization of Large Graph

and intensity of author. The analysis is performed by using a forgetting function which

holds publication information relevant to the selected date.

2.9 Graph Visualization

It is representation of interconnected nodes arranged in space and its representation in

particular structure so that user can understand it easily. Graph visualization comprises of

graph layouts and graph visualization techniques.

Figure 2.18: Graph Layouts

2.9.1 Graph Layouts

Representation of graph considered as graph layout. It includes trees and more general

networks. Figure 2.18 shows graph layouts. It is mainly composed of node-link layout,

space division layout, space nested layout, 3d layout and matrix layout.

i. Node Link Layout: It shows a relation among set of nodes and set of edges. A Position

of node computed and nodes connected by drawing curve. Generally accepted rules

include: evenly distribution of nodes and edges, avoidance of edge crossing, display of

32

Development of Novel Algorithms for Analysis and Visualization of Large Graph

isomorphic substructure and minimization of edge bends. It is further classified into

three types such as Tree Layout, Tree+ Link Layout, and Spring Layout.

• Tree Layout: It shows parent- child relationship to indicate a link between nodes

as shown in figure 2.19[71,73]. It suffers from a major problem of inefficient use of

screen space. It wastes the root side of the tree and severely clutters the opposite

side.

Figure 2.19: Classical Hierarchical View for A
Moderate Large Tree

Figure 2.20: Radial View

Figure 2.21: Balloon View

This problem can be avoided by another node-link layout called as radial layout

as shown in figure 2.20[71]. It recursively positions children of a sub-tree into

a circular wedge shape according to their depths in the tree. Generally, radial

views including its variations share common characteristics .The focus node is

always placed at the center of the layout, and the other nodes radiate outward on

separated circles.

Balloon layout is shown in Figure 2.21 is similar to a radial layout[72]. Balloon

layouts are formed where siblings of sub-trees are placed in circles around their

father node.

• Tree+ Link Layout: Tree Plus enables users to interactively explore a graph by

starting at a node and then incrementally expanding and exploring the graph.

For example, Web Map [72] gives a visualization of users web browser history. If

a webpage is visited for the first time, a new node is added and connected with

33

Development of Novel Algorithms for Analysis and Visualization of Large Graph

its predecessor as part of the underlying tree. However, if the webpage is visited

before, a cross link is created to connect the node with its predecessor as shown

in figure 2.22[74].

Figure 2.22: Tree + Link Layout

ii. Space Division Layout: In space division layouts, the parent-child relationship is in-

dicated by attaching child node(s) to the parent node. Since the parent-child and

sibling relationships are both expressed by adjacency, the layout has clear orientation

to differentiate these two relationships as shown in figure 2.23[75].

Figure 2.23: Sun Burst Visualization of A File Directory

iii. Space Nested Layout: It uses nested way for drawing the hierarchical structure. A

rectangle is subdivided into smaller rectangles horizontally or vertically. An outer

large rectangle represents the parent, while the smaller rectangle represents one of its

children. Size of rectangle is in proportion with attributes of a node. It is also referred

to as treemaps, as it is the most compact display among three layouts [76].

34

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 2.24: Tree Maps Views: Tree Maps View of A File Directory

iv. 3D Layout: Many 2D layouts are extended to 3 D layouts because 3D layouts provide

an extra dimension in terms of more space for displaying large structures [75]. Cone

tree structures as shown in figure 2.24 is one of the examples of 3D layout[75]. The

parent-child relationship is indicated by using cone in which parents are placed at the

apex of cone where as children are placed at the base of cone.

Figure 2.25: Cone Tree Layout

v. Matrix Layout: Another approach for graph visualization is a matrix layout. Graphs

can be presented by their connectivity matrixes as shown in figure 2.26[80]. Each row

and each column corresponds to a node. If it contains an edge from i to j, then it is

represented with an interaction of (i, j).

35

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 2.26: Matrix Views

2.9.2 Graph Visualization Techniques

The large graph problems are cannot be solved using static layout techniques hence for

the computerized information visualization, the most popular schemes are Interaction and

navigation. For solving these problems many visualization techniques have been developed.

Graph Visualization Techniques are mainly classified into two types namely visual clutter

reduction and interaction and navigation as shown in figure 2.27.

Figure 2.27: Graph Visualization Techniques

2.9.3 Visual Clutter Reduction

Visual clutter is one of the problems of a large graph. A layout should have minimum visual

clutter. The different ways used for it are edge displacement, node clustering, and sampling

36

Development of Novel Algorithms for Analysis and Visualization of Large Graph

[63].

2.9.3.1 Edge Displacement

The best method for reducing the edge clutter is to minimize edge crossing. To achieve it, the

best solution is to draw edges as splines and polylines. If geographical positions of a graph

are fixed, then edge drawing becomes easier. To handle large graph and find its optimal

solution is very time- consuming task. Hence, if a layered graph is constructed without

edge crossing then it leads to more zigzag lines which is not valid regarding visualization of

information.

Some methods have been proposed by researchers to reduce edges. One of the methods

is a flow map layouts proposed by Phan et al[81]. However, flow map layout can only be

applied to a set of edges which share a common end point and draws them as a freestyle

binary tree layout as shown in figure 2.28[65].

Figure 2.28: An Example of Flow Map: Migration

Confluent drawing: In which, the lines are drawn as curves for smooth intersecting arcs

and it leads to reduce edge crossing[82].Two nodes are connected if and only if there is a

smooth curve is present without ant sharp turns as shown in figure 2.29[82].

37

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 2.29: Confluent Drawing of Layered Drawings

In the confluent drawing layout, edge clustering approach is used, which focuses

on the reduction of edge covering area instead of edge crossing. With the edge merging,

freer space is available which causes visual clutter reduction. The most important feature

of edge clustering is that it provides a simple and clear picture of the whole graph[82].

Figure 2.30 shows hierarchical structure formation where common endpoints are com-

puted and treated as tree roots, then leaf positions are identified, leaves are preserved[83].

The line widths are proportional to edge weights. Flow maps are provided which helps in

reduction of visual clutter. It works well for small graph visualization but fails for over-

lapped flow maps which generate difficult patters. This drawback can be further improved

by another clustering approach known as edge bundles.

Figure 2.30 shows edge bundles where bundle width naturally indicates links con-

nectivity with different parts of a hierarchical structure. In this algorithm, if tree path

connects links two endpoints, then that link is curved. All curves are clustered at that

segment. Bundles indicate how many links are connecting different parts of the hierarchical

structure.

38

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 2.30: Example of hierarchical edge bundles: (a) and (b) show a balloon layout of a
Software system and its associated call relations and its bundled result.

Wong et al. presented edge clutter removal strategy named as EdgeLens [84].

It depends upon users request. In this strategy, node positions are fixed, EdgeLens can

effectively curve graph edges away from their focus. This structure is shown in figure

2.31[84].

Figure 2.31: Example Of Edge Lens: (A) A Simple Radial Layout With Dense Edges. (B)
Edge- Lens Views with Color and Transparency Enhancement

2.9.3.2 Node Clustering

In general, Clustering means a grouping of nodes. It has many applications in various

domains such as cluster analysis, grouping, classification, and pattern recognition. For a

specific context like visual clutter reduction, clustering refers to divide the whole graph into

subgraphs. Representing those subgraphs as a single node, a grouping of similar elements

39

Development of Novel Algorithms for Analysis and Visualization of Large Graph

and free the space. This works well to reduce visual clutter. Mainly there are two types of

node clustering as content-based and structure based.

1. Content-Based: This is application relevant approach suitable for specific problems

and not a generalized one. It is based on semantic data related to graph elements.

It produces meaningful clustering results and explains a method for aggregation of

vertices depending on attributes. It computes attribute values like pivot tables in

spreadsheet calculators [84, 85].

2. Structure based: This is a generalized approach of clustering and hence more preferred

than the content-based approach. In this approach, clusters are generally formed

based on graph components that have more intra link connections than the outside

elements. In this type of design, various heuristics such as connectivity, cluster size,

geometric proximity and statistical variation are proposed [86-88].

Structure based approach is classified into three types as graph theoretical, singe pass and

iterative algorithms.

1. Graph Theoretical: in this technique, similarity between individual nodes is computed

and similarity matrix is formed. Closely related node forms the cluster, where each

cluster indicates connected graph. Different techniques used in graph theoretical are

spectral bisection [89], spectral quadra section [90], and octa section [91].

2. Single Pass: In this technique, the individual data seeds are known as cluster seeds.

The nodes are added one by one until the big cluster is formed. In this way, clusters

are formed by growing individual cluster node [92], [93].

3. Iterative algorithms: It works in iteration and forms hierarchical structure by consid-

ering single pass clustering as a starting point. It merges smaller clusters into one to

form larger one [94-97]. It involves three more steps such as coarsening, partitioning,

projecting and refining of a graph.

40

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 2.32: Different Clustering Levels of the Same Graph

Although quality of graph is dependent on its application domain. Some general char-

acteristic of good clustering algorithm for human perception as

• Balanced cluster: At each hierarchy level, each cluster size should be same and dis-

tribution of nodes must be as even as possible.

• Small cluster depth: In recursive decomposition, the no. of layers should be small.

• Convex cluster drawing: Each cluster should fit in a simple convex region

• Balanced aspect ratio: Cluster regions should not be too thin. It should be big enough.

• Efficiency: cluster computation should not take a long time.

• Symmetry: Display balance should be maximized.

Well arranged clusters can provide clear visualization to the user. Some algorithms provide

two or three dimensional representation of the graph are discussed in [99-102] as shown in

figure 2.33[104].

Figure 2.33: Clustered Graph Layouts: (A) Layered Layout (B) 3D Layout

41

Development of Novel Algorithms for Analysis and Visualization of Large Graph

2.9.4 Interaction and Navigation

Navigation and interaction are essential in computerized information visualization. It can

help users to reveal detailed structures in large graphs. Yi et. al. proposed a summarization

of popular interaction techniques [105]. Based on the purposes, they are categorized into

seven groups:

• Select: It helps users to highlight certain focus targets, or request computer to process

some specific items.

• Explore: It is used to change the current viewpoint to another part of the data in the

same layout representation, such as panning and rotating.

• Reconfigure: It is used to switch between different layouts with the same representa-

tion scheme, such as replacing nodes in graphs and reordering data items based on

different criteria.

• Encoding: It is used to switch different representation schemes, such as changing the

layout from node-link representation to treemaps representation.

• Abstract/Elaborate: It adjusts the level of abstraction of a data representation to

give users different insights into the data, such as zooming and clustering.

• Filter: It reduces the amount of data being displayed and makes the remaining items

more visible based on user’s request.

• Connect: It is used to highlight the connections between items or the items which are

relevant to the focus item.

For large graphs, three of them are especially helpful: explore, abstract/elaborate, and filter.

Remaining strategies like smooth panning and zooming, focus + context and animation to

improve the quality of interaction.

2.9.4.1 Zoom and Pan

Zoom and Pan are important and fundamental tools for large information exploration.

Zoom in provides detailed insight of data and Panning means smoothly moving the camera

across a scene.

42

Development of Novel Algorithms for Analysis and Visualization of Large Graph

2.9.4.2 Filtering

Filtering refers to hide items from the view. It is a very simple concept based on the

property of a filter in which data whose attributes are below some threshold, those are

removed. Visual filtering interface should provide various visual browsing tools such as fast

and continuous display of results, progressive refinement of parameters, Researchers Ahlberg

et al. proposed the dynamic query filters for visual information seeking [106]. Their query

parameters are rapidly adjusted with sliders, buttons and so on. A key to these principles

is to understand the enormous capacity for human visual information processing.

2.9.4.3 Sampling

Sampling is an approach used for reducing visual clutter. It can be performed by focussing

on abstract view of input graph. Clustering algorithms are classified into two types based

on clustering criteria as natural clustering and content-based clustering.

1. Natural clustering: It is based on the structural information of graph nodes; hence also

known as structural based clustering. It finds information patterns of nodes having

some common criteria such as the distances between graph nodes and node degrees

[62].

2. Content-Based clustering: It considers the semantic meaning of nodes which are hav-

ing relations between them. This technique is rarely used due to its application

dependent property. [62].

2.9.5 Focus +Context

Focus +context technique is mainly focused to overcome the drawback of zooming of losing

the context. In zooming technique, a particular area is zoomed without having an idea of

its surrounding. Where Focus+ Context provides an ability to see the focused object in a

detailed view and overview of surrounding information [107]. Actually, this technique does

not replace zoom and pan but complements them. Majority of the visualization system

implements both techniques together. Fish-eye is one of the most popular focus context

techniques [107].

43

Development of Novel Algorithms for Analysis and Visualization of Large Graph

2.9.6 Animation

It is one of the unique visualization techniques over other paper-based visualization tech-

niques. It provides data exploration by adding time as an important factor. Animation

helps users to understand the concept without thinking more [107]. Animated transition

provides a better view of data relations.

2.10 Benchmark Datasets Available

Many Datasets available for graph partitioning, among them two applications are most

important. One is in Very Large Scale Integration circuit designing and another is analysis

and visualization of the co-authorship relationship based on the intensity and topic of joint

publications.

2.10.1 for VLSI Circuits and sparse matrix ordering

The standard dataset by Walshaws benchmark for graph partitioning are as follow [116]-

• BCSSTK31(BC31): It is a 3D stiffness matrix which contains 35588 vertices and

572914 edges.

• BCSSTK32 (BC32): It is a 3D stiffness matrix which contains 44609 vertices and

985046 edges.

• BRACK2 (BRCK): It is a 3D finite element mesh matrix which contains 62631 vertices

and 366559 edges.

• 4ELT: It is a 2D finite element mesh matrix which contains 15606 vertices and 45878

edges.

• COPTER2: It is a 3D finite element mesh matrix which contains 55476 vertices and

352238 edges.

• CANT: It is a 3D stiffness matrix which contains 54195 vertices and 1960797 edges.

• ROTOR: It is a 3D finite element mesh matrix which contains 99617 vertices and

662431 edges.

44

Development of Novel Algorithms for Analysis and Visualization of Large Graph

2.10.2 for Social Network Analysis

DBLP is a computer science bibliography website. DBLP originally stood for Database

systems and Logic Programming. As a backronym, it has been taken to stand for Digital

Bibliography Library Project. DBLP has collection of more than 3.66 million journal arti-

cles, conference papers, and other publications on a computer. All important journals and

proceedings papers on computer science are tracked (http : //dblp.uni−trier.de/xml/)[121].

The file dblp.xml contains all bibliographic records which make DBLP. It is accompanied

by the data type definition file dblp.dtd. You need this auxiliary file to read the XML file

with a standard parser [4]. dblp.xml has a simple layout: record 1 ... record n

These tags correspond to the entry types used in BibTEX[5]. DBLP records may be

understood as BibTEX records in XML syntax +:

<article key=”journals/jmm2/PatilKBK10” mdate=”2017-05-26”>

<author> Varsha H. Patil</author>

<author> Gajanan K. Kharate</author>

<author> Dattatraya S. Bormane</author>

<author> Snehal M. Kamlapur</author>

<title> Super Resolution for Fast Transfer of Graphics over Internet.</title>

<pages> 71-78</pages>

<year> 2010</year>

<volume> 5</volume>

<journal> Journal of Multimedia</journal>

<number> 1</number>

<ee>https://doi.org/10.4304/jmm.5.1.71-78</ee>

<url>db/journals/jmm2/jmm5.htmlPatilKBK10</url>

</article>

Various attributes of Record are-

• key : key is unique key of record. It shows UNIX file system with slash separation.

The sub trees in the key namespace are for papers published in journals, transactions

and magazines. Second part of DBLP depicts conference series or periodicals. Last

45

Development of Novel Algorithms for Analysis and Visualization of Large Graph

part of key contains sequence of alphanumeric characters with ids formed from authors

name and year of publication.

• Mdate: Mdate is the of last modification of record. The format of date is YYYY-

MM-DD. It provides facility of loading recent additions into application. It contains

old versions of records.

• Title: This is one of the important element has to be exist in every DBLP publication

record. It has sub elements for subscripts, sup elements for superscripts, i elements

for italics, and tt for typewriter text style.

• Pages:It shows length of paper. Preferred style for page numbers is from to. For a

single page paper, page number without hyphen is written. For articles in magazines,

comma separated list of page numbers of page ranges are used.

• Years: The year element is a four digit number interpreted according to Gregorian

calendar. For journal articles, it is assumed that date of publication of the issue is

definite. For conference proceedings, the specification of year becomes tricky because

sometimes proceedings are not published in the same year in which conference held.

Hence year in which conference is held considered as a year in a record. For journal

articles, the volume and number field are used to specify the issue in which paper

appeared.

• URL and ee: DBLP record contains two URLs under this field. As URLs are of two

types, local and global. Global URL is the standard internet URL starts with protocol

specification of the form letter + : (http:, ftp:, .) . Locsl URLs does not start with

protocol name.

ee indicates the position of the electronic edition. ee contains the required link infor-

mation of ACM and IEEE papers. Usually, the ee fields are global URLs.

2.11 Summary

A significant development in graph routing task, analysis has been seen in the last few

decades, and literature in the form of journals, transaction papers, patents, reviews, and

46

Development of Novel Algorithms for Analysis and Visualization of Large Graph

surveys is available. Many of the research papers have been referred for knowing the status

of research in the domain and identifying the research gap. It has been observed that the

process of graph partitioning is the most important and challenging one. The major goals

of partitioning are to speed up the design process, independent designing, no loss of original

system functionality and simplification of routing tasks with objectives as to minimize

interactions between blocks. Its accuracy directly impacts the quality of partitioning and

loss of information in the form of connectivities through edges in relevance with the work

undertaken the retrieval of author’s information from DBLP dataset leading to association

discovery.

2.11.1 Research Gaps

Though enough attention has been paid researchers, Literature survey reveals that the

existing system for graph analysis has some limitations as -

1. Existing systems are matrix based

As matrix-based approach is used for storing the input file to be partitioned, it suffers

from difficulties in maintaining a connection among nodes and is expensive in terms of

time. Time required is high so it takes more time for processing towards computation

of eigenvector corresponding to second smallest eigen-value known as fiedler vector.

It is claimed by many researchers that the number of edge cuts obtained is also more

in case of matrix based approach [31].

2. More communication overhead in parallel approaches

Many of the researchers have implemented multilevel approach by using bisection

method. It runs more efficiently only on parallel computer only if a good partition

of the graph is available. But its efficiency is poor as most of the time is spent for

communication [37].

3. Geometrical information is not available for graph partitioning

Many of the researchers have used geometric information of a graph for graph parti-

tioning and it is less efficient technique because most of the time geometrical infor-

mation is not provided and partitions obtained are optimized as compared to spectral

47

Development of Novel Algorithms for Analysis and Visualization of Large Graph

bisection method [33]. It is observed that less number of edge cuts not ensured by a

geometric technique.

4. Many of the techniques can handle only exact bisections

Popularly used Kernighan Lin heuristic algorithm performs partitioning which works

in phases and locks vertices after each move. It is only applicable to handle exact

bisections. It means a system can be decomposed into 2, 4, 8, 16256 partitions

with very high time complexity [31]. There is need to develop partitioning technique

for decomposition not only in terms of bisection but also any number of odd partitions

too.

5. Currently available visualization systems is application specific

Visualization systems available are application specific, viz Gmine, Gephi, and for-

coa.net which are developed for specific applications like VLSI designing, social net-

work analysis etc.[111]. There is a need to develop application independent visualiza-

tion system which will work accurately for all such applications.

6. Existing author and co- author information retrieval system are based on

dedicated server

An author and co- author information retrieval system proposed by Forcoa.net is the

dedicated server designed for DBLP data set to retrieve authors performance measure

parameters which need the support of silver light and browser- dependent system [111].

There is need to develop browser independent system with some precise performance

measure parameters.

48

Chapter 3

Novel Algorithms for Analysis and

Visualization of Large Graph

Graph partitioning and visualization systems are the core techniques for large graph

analysis. Graph size and number of partitions to be formed are major concerns for any

graph partitioning algorithm. A graph partitioning algorithm is called as reliable and

efficient if it successfully partitions a large graph containing huge number of vertices and

huge number of edges in given number of partitions without any inconsistency in actual

information stored in a graph. The need for an efficient and reliable graph partitioning

algorithm is the motivation behind this research work. The main goal of research work is to

build novel algorithms for partitioning and visualization of large graphs in order to reduce

time complexities and to achieve greater accuracy and better insights of details stored in

graph during graph analysis. In this chapter the design procedure of algorithm and working

of each developed algorithm for graph partitioning and visualizations are discussed in detail.

3.1 Overview

A graph partitioning problem is defined as - for a graph G(V,E), where V is set of vertices

and E is set of edges, partition V in k roughly equal subsets (partitions) such that the

number of edges to be removed should be minimum. Let P denotes set of partitions obtained

after partitioning a graph G into k number of partitions, such that P= {p1, p2,......pk | pi, pj

49

Development of Novel Algorithms for Analysis and Visualization of Large Graph

⊆ V , pi ∩ pj = ∅ and i 6= j} [4]. Ideally, the partitioning algorithm should process a graph

represented in simplest form as (vi, vj, eij) where vi is source vertex, vj is target vertex

and eij is edge between vi and vj. Here eij may carry weight or label if graph G(V,E) is

weighted graph. While building the graph partitioning algorithm, the following objectives

were of major concern -

1. Graph G(V,E) needs to be evenly partitioned into disjoint partitions.

2. Number of edge-cuts needs to be minimum.

3. Algorithmic complexity in terms of time and memory needs to be minimum.

4. Data loss during partitioning, that occurs due to elimination of edge- cuts is to be

avoided.

5. All sub-graphs needs to be able to visualize dynamically.

During partitioning, it is expected that there should not be an inconsistency occurring

among generated partitions as interactions in graph carry vital information. To maintain

consistency between original graph and generated sub-graphs, edge-cuts removal between

two vertices is another important task. To achieve this goal, the main emphasis of a novel

algorithm is on deciding number of partitions to be generated, selection of seed vertices

while partitioning and visualization of resultant sub-graphs.

3.1.1 Number of Partitions to be Generated

Number of partitions is total subsets (k) of set of vertices V . An important aspect of graph

partitioning is that these subsets are disjoint sets. Any two sets are disjoint when there

intersection in null set. In earlier work of research, researchers used bisection partitioning

technique for graph partitioning. In this technique, graph is recursively split into two

balanced partitions [42], but this always do not holds as complexity increases in each level

of partitioning and number of partitions generated are multiple of two, so there is a need

to keep algorithm flexible which should split graph into k number of partitions such that 2

to v − 1.

50

Development of Novel Algorithms for Analysis and Visualization of Large Graph

3.1.2 Selection of Vertices While Partitioning

In partitioning process of graph G(V,E), each vertex v ∈ V where V= {v1, v2,vn} needs

to be placed in a proper partition. In an early stage of partitioning, the difficulty is arises

while choosing the first vertex in each partition around which partition has to be built.

Researchers have designed some algorithms like greedy graph growing partitioning algorithm

and multilevel partition algorithm to select a random vertex or set of vertices as initial

vertices or a sub-graph for each partition and further, these partition graphs grows [15]. As

these approaches are heuristic based, they require the number of additions and removals of

vertices till it finds the best suitable partition for it. Some of the partitioning algorithms

are refinement algorithms, like KL algorithm, which is based on the selection of two vertices

randomly to bisect a graph into two sub-graphs [29, 37].

The performance of these algorithms depends on the quality of the bisection that it

starts with. As a random selection of initial vertices may not always give correct results

and it may lead to higher complexity in terms of time and space. If initial bisection is not

correct then performance of partitioning algorithm degrades [29].

To overcome these shortcomings, it is most important to select appropriate initial (seed)

vertices. For selection of seed vertices, an algorithm 5 is designed in which initially degree

of each vertex v, (δv) in V is computed. Further vertices in V are sorted in decreasing order

of their degrees. To partition graph G into k partitions such that P= {p1, p2,pk}, seed

vertex is obtained for each partition pi using algorithm 5. First k vertices from the sorted

V are considered as seed vertices such that vi is seed vertex for partition pi.

51

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Algorithm 5 Degree based Seed Vertex Computation

INPUT: Graph G(V,E), number of partitions to be generated (k)
OUTPUT: Seed vertices for partitions S
Procedure SeedVertexComputation ()

1: for each vertex v in V of G do

2: δv ← degree of vertex v

3: end for

4: Sort V in descending order based on degree of vertices

5: for i = 0 to k − 1

6: Seed vertex for partition pi,S[i],←V[i]

7: end for
end procedure

This approach of selection of seed vertices exhibited correct results for some smaller

graphs but failed to generate expected partitions for graphs having two or more vertices

of same degree. As this approach considers first k vertices as seed vertices in an ordered

manner, if degree of any (k+ 1)th vertex δV [k+1], equal to degree of the kth vertex V [k], then

the kth vertex is considered as seed vertex, though (k + 1)th vertex is more appropriate

seed vertex than kth vertex. It leads to an improper seed vertex selection and results

in inconsistent graph partitioning, also the number of edge-cuts obtained is more than

expected. Table 3.1.shows results obtained for some graphs using algorithm 5.

Table 3.1: Number of Desired Edge-cut and Obtained Edge-Cut

Sr.
No.

Number of
Vertices

Number of
Edges

Number of
Partitions to
be Generated

Expected
Number of
Edge-cut

Number of
Edge-cuts
Obtained

1. 8 11 2 2 2
2. 10 11 2 2 2
3. 8 10 2 2 2
4. 8 13 2 03 05
5. 317 452 4 32 100
6. 313 768 5 171 368
7. 313 1194 5 651 664

To overcome these flaws of algorithm 5, it is required to modify algorithm 5. Algorithm

52

Development of Novel Algorithms for Analysis and Visualization of Large Graph

6 is the result of improvements done in algorithm 5. Algorithm 6 is based on set difference

approach. In this approach, in order to determine appropriate seed vertex, first V is sorted

in descending order based on degrees of vertices same as in algorithm 5. From sorted

V maximum degree value, δmax is obtained. δmax is utilized significantly in algorithm 6

for selection of seed vertices. Vertices in V having degree value equal to δmax are mainly

considered as most suitable seed vertices M , where M = {v | v ∈ V and δv == δmax}.

If number of partitions k, in which graph g is to be partitioned is greater than | M |

then algorithm 5 is used for selection of seed vertices else set difference based approach is

adopted to decide seed vertex for each partition p in P . In this approach, to decide whether

vertex vi ∈M is appropriate seed vertex or not, the differences between degrees of M [i] and

each M [j] where j = i+ 1 are calculated using equation 3.1 and termed as set difference of

DM [i].

△M [i],M [j] = δM [i]−M [j] (3.1)

From the set difference obtained for vertex M [i], the vertex V [j] having minimum set

difference is considered as seed vertex for partition p. The same process is repeated to

determine seed vertices of remaining k − 1 partitions.

53

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Algorithm 6 Set Difference based Seed Vertex Computation

INPUT: GraphG(V,E), number of partitions (k)
OUTPUT: Seed vertices for each partition
Procedure SetDifferencebasedSeedVertexComputation ()

1: for each vertex v in V in G do

2: δv ← degree of vertex v

3: end for

4: Sort V in descending order based on degree of vertices

5: v ← V [0]

6: Maximum degree for G, δmax ← δv

7: M ← ∅

8: for each vertex v in V do
if δv == δmax then

9: add v to M

10: end if

11: end for

12: if length(M) < k then

13: for each vertex v in M do

14: Seed vertex for partition pi, χpi ← v

15: end for

16: else

17: for i← 0 to k − 1 do

18: set difference for M [i], DM [i] ← φ

19: for j ← i+ 1tolength(M)− 1 do

20: ∆M [i],M [j]← δM [i]−M [j]

endprocedure

The selection of seed vertices using algorithm 5 and 6 is illustrated for graph G1(V1, E1).

54

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 3.1: Graph G1(V1, E1)

Assume Graph G1 (V1, E1) as shown in figure 3.1 is to be partitioned into two partitions

(k = 2). Algorithm 5 is applied to determine seed vertex for partitions (p1 and p2) and the

intermediate results obtained during each step of algorithm 5 are discussed below-

Let V1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, vertices in G1

Degree of each vertex in V1 is computed and stored in D1

D1= { 2, 3, 3, 4, 4, 3, 4, 4, 2, 3, 2}

Then V1 is sorted in descending order based on degree of vertices. The modified values of

V1 and D1 are below-

V1= {4, 5, 7, 8, 2, 3, 6, 10, 1, 9, 11}

D1= {4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2}

As graph G1(V1, E1) is to be partition in to two partitions, first two vertices from V1 (M1

= {4 , 5}) are considered as seed vertices. Vertices 4 and 5 are determined as seed vertex

for partition p1 and p2 respectively. Partition p1 and p2 become p1= {4} and p2 = {5}.

Further, by using algorithm 7 remaining vertices from V1 are evenly distributed into

partitions p1 and p2. The partitioning process resulted in p1= {1, 2, 3, 4, 6},p2 = {5, 7, 8,

9, 10, 11}. The numbers of edge-cuts obtained are 5 as F = {2-5, 4-5, 4-7, 6-7, 6-9}.But

this count is greater than the value of expected edge-cut count which is 4. This denotes

that the partition was not occurred efficiently and it still has scope for improvement.

For proper and efficient partitioning of graph G1 an algorithm 6 is applied for selection

of seed vertices. As δmax value for graph G1(V1, E1) is 4 and vertices whose degree equal to

δmax are M1= {4, 5, 7, 8}. After applying algorithm 3.2 vertices 5 and 8 are obtained as

55

Development of Novel Algorithms for Analysis and Visualization of Large Graph

seed vertices for partition p1 and p2 respectively. Now partition p1 and p2 became p1= {5}

and p2= {8}. Further using algorithm 7 remaining vertices from V1 are evenly distributed

into partitions p1 and p2. The partitioning process resulted in p1= {1, 2, 3, 4, 5, 11}, p2=

{6, 7, 8, 9, 10} and edge cut F = {3-6, 4-7, 5-8, 11-8]. The value of count of edgecuts

obtained | F | is 4 which is equal to ideal edge cuts count for partitioning a graph G1 into

two partitions. Resulted two partitions for graph G1 are as shown in figure 3.2 and 3.3

respectively.

Figure 3.2: Partitioned sub-graph
G

′

1(V
′

1 , E
′

1)

Figure 3.3: Partitioned sub-graph
G

′′

1(V
′′

1 , E
′′

1)

In order to evaluate accuracy of algorithm 6, it is applied on graphs of different sizes

listed in table 3.1. Table 3.2 shows the ideal value of count edge- cuts and value of obtained

edge cuts count for each graph. From table 3.2 it is observed that values obtained for edge

cut counts are equal to ideal edge count values.

Table 3.2: Number of Desired Edge-cuts and Obtained Edge-cuts after Refinement

Sr.
No.

Number of
Vertices

Number of
Edges

Number of
Partitions

Expected
Number of
Edge cut

Number of
Edge cuts
Obtained

1. 8 11 2 2 2
2. 10 11 2 2 2
3. 8 10 2 2 2
4. 8 13 2 03 03
5. 317 452 4 32 32
6. 313 768 5 171 171
7. 313 1194 5 651 651

56

Development of Novel Algorithms for Analysis and Visualization of Large Graph

3.1.3 Graph Visualization

Literature survey reveals that the problem of graph visualization for generated dynamic

partitions (sub graphs) is unhandled [90], hence visualization of generated sub graphs

become important and need to be focussed. Algorithm 12 is designed for visualization of

sub-graphs dynamically. Sub graphs generated as an output of partitioning are provided as

input to the visualization system which displays these sub graphs as a network of vertices

and edges.

Figure 3.4: Partitioned sub graph
G

′

3(V
′

3 , E
′

3)

Figure 3.5: Partitioned sub graph
G

′′

3(V
′′

3 , E
′′

3)

57

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 3.6: Partitioned sub graph
G

′

3(V
′

3 , E
′

3)

Figure 3.7: Partitioned sub graph
G

′′

3(V
′′

3 , E
′′

3)

Figure 3.4 shows an input graph G2(V2, E2), its visualization before partitioning is shown

in figure 3.5. G2(V2, E2) is partitioned into two partitions. Figure 3.6 and 3.7 show the

dynamic visualization of two sub-graphs G
′

2(V
′

2 , E
′

2) and G
′′

2(V
′′

2 , E
′′

2) respectively with a

number of edge-cut value as 1(5-6).

3.2 Efficient Partition Building and Cut set Comput-

ing Algorithm

The architecture of an efficient partitioning and edge- cut set computing system is as shown

in figure 3.8. It comprises of functional blocks as - data set parsing, degree computation,

vertices ordering, partition generation based on most connected vertex and partition size

and edge-cut computation and sub-graphs visualization. The working of each block is

discussed in brief.

58

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 3.8: System Architecture for an Efficient Partitioning and Edge-cut Set Computing

Partitioning system accepts input as Graph G(V,E) where V is a set of vertices and

E is a set of edges. This system is based on finding stronger connected component with

respect to seed vertices by eliminating minimum number of edges (edge- cut) to disconnect

the whole graph into subgraphs (partitions).

Let V = {v1, v2, v3,v4 ...vn}

E = {e1, e2, e3, e4....en}

n = Total number of vertices in graph G(V,E)

S = Set of seed vertices

3.2.1 Data Set Parsing

Graph G(V,E) is given as an input for data set parsing. For each vertex v of graph G(V,E),

all adjacent vertices are found by verifying direct edge connectivity between vi and remaining

vertices of G(V,E). It is represented in the form of adjacency list Al as vi ∈{v1, v2, v3,v4

...vn}, where vi ∈ V and {v1, v2, v3,v4 ...vn} are adjacent vertices(direct neighbour) of vi.

3.2.2 Degree Computation and Vertex Ordering

From Al obtained in the previous step, the degree of each vertex vi is computed as δv and

stored in D where vi ∈ V . Further V is sorted in descending order based degree of vertices.

59

Development of Novel Algorithms for Analysis and Visualization of Large Graph

3.2.3 Partition Generation

Graph G(V,E) is partitioned into k partitions based on stronger connected components.

P is set of partitions represented as P= {p1, p2.....pk}. Capacity for each partition is the

maximum number of vertices from V can be placed in partition pi and it is calculated

using equation 3.2 and 3.3.

Let γ = Capacity of partition pi

γ = (| v | /k) + 1 for | v | is odd (3.2)

γ = (| v | /k) for | v | is even (3.3)

sizeof(pi)= Size of partition pi (number of vertices present in partition pi)

χ= Seed vertex

S = Set of seed vertices

X = V − S = Remaining vertices of graph G(V,E) excluding seed vertices.

Using algorithm 6, δmax of vertices for graph G(V,E) are determined and seed vertices are

selected for each partition.Seed vertex χ in every partition is permanent and to distinguish

seed vertex χ from other vertices, vs assigned an initial weight for partition pi as wχ,pi =

1.1.

After obtaining seed vertices for all partitions and assignment of initial weight to each seed

vertex, now each partition pi contains a single vertex. Next step is to place each vertex v

from X into appropriate partition. For this vertex-partition weight (ωv, p) is calculated for

each vertex v in V using algorithm 7. The ωv, p is the weight of vertex v for partition p

and Wv[p] stores the weight of v for all partition to be build. The ωv, p is calculated by

obtaining the distance of v from seed vertex of partition p using equation 3.3 and its value

ranges in between 0 to 1.With reference to algorithm 10, remaining vertices from X are

added to partition p in an ordered manner. The partition having maximum weight ωv, p for

vertex v is chosen as a suitable partition for vertex v.

If v is not member of p, then initial distance of v from p , σv,p is set to 1. The value of the

60

Development of Novel Algorithms for Analysis and Visualization of Large Graph

distance is incremented by 1 if v is not adjacent to seed vertex of partition p. The value

of distance is incremented till path from v to seed vertex of p is not obtained. If there is

no path exist between v and seed vertex of p, then distance σv,p remains 0. Using value

obtained for distance σv,p of vertex v to partition p, wv, p is calculated using equation 3.3.

ωv,p = 1.0/σv,p (3.4)

Algorithm 7 Weight Computation

INPUT: Graph G(V,E), Partitions P, Vertex v
OUTPUT: Vertex Partition Weight Wv

Procedure WeightComputation()

1: Weights of vertex v for each partition p in P , Wv = {φ}

2: for each partition p in P do

3: distance of v to partition p, σv,p ← 1

4: for each vertex, vi in partition p do

5: if v and vi are adjacent then

6: Weight of v for partition p, ωv,p ← 1.0/σv,p

7: Wv[p]← ωv,p

8: break;

9: else

10: σv,p ← σv,p+1

11: end if

12: end for

13: end for

14: return Wv

endprocedure

Wv[p] weights of v for all partitions in P is sorted in descending order. Partition p with

maximum weight is considered as the most appropriate partition for v. If p is full to its

capacity then it is required to find another suitable partition for vertex v. So before placing

vertex v in partition p following cases are checked

Case 1: if sizeof(p) < γ then vertex v is placed in partition p.

Case 2: If sizeof(p) < γ, it means partition p is full to its capacity and this signifies that

61

Development of Novel Algorithms for Analysis and Visualization of Large Graph

v cannot be placed in p. But as the weight of v for p is maximum in comparison to other

partitions, so p is most suitable partition for v. In order to place v in partition p, it is

required to move a vertex in p to other partition. Lets consider vertex vx is to be moved

from partition p to px in order to make place for v in p. To select most suitable px from

remaining k − 1 partitions ,weight of vx for each partition pi is calculated. Using these

weights values first all possible partitions (Tv) to which vx can be moved are obtained.

A partitioned pi in P such that pi 6= p is marked as possible partition if ωvx,pi > wvx,p.

After obtaining all possible partitions Tv, it is sorted in descending order based on weights.

Vertex vx from partition p is moved to first vacant partition px in Tv and vertex v is placed in

partition p in the place of vertex v. If there is no any vacant partition in Tv then vx remains

in partition p and vertex v is marked as remaining vertex and it has not get assigned to any

partition.

Case 3: If no partition is assigned for vertex v in case 2, then vertex v is considered as

remaining vertex and it is added to X . Finally, all remaining vertices from X are placed

in suitable partitions using the same process discussed for vertex v.

3.2.4 Edge-cut Computation and Graph Visualization

In the previous section 3.2.2, k numbers of partitions are generated for graph G(V,E) by

partitioning V into k number of subsets. The edge-cuts between partitions are found us-

ing algorithm 11. To find disconnected edges between two partitions, the adjacent vertices

between these two partitions in Graph G(V,E) are obtained and edges connecting these

adjacent vertices are considered as disconnecting edges for these two partitions. Consider

p1 and p2 are two partitions such that p1= {v1, v2...vi} and p2= {v1, v2...vj}. To find dis-

connected edges between p1 and p2, it is confirmed that each viǫp1 and vjǫp2 are adjacent

vertices in Graph G(V,E). If resulting edge e(vi → vj) is considered as a disconnected edge

for partitions p1 and p2, eij is added to edge- cuts. Similarly, all possible edge-cuts between

partitions pi and pj are determined where pi ∈ P and pj ∈ P − pi.

For a graph G3(V3, E3)from DBLP dataset having 313 vertices and 450 edges is provided

as an input to algorithm 10 and 11. Number of partitions to be formed are k = 3, par-

titioning algorithm resulted in 19 edge-cuts as listed in table 3.3 and dynamic subgraphs

visualization of three subgraphs as G
′

3(V
′

3 , E
′

3) , G
′′

3(V
′′

3 , E
′′

3) and G
′′′

3 (V
′′′

3 , E
′′′

3) is shown in

62

Development of Novel Algorithms for Analysis and Visualization of Large Graph

figure 3.9, 3.10 and 3.11 respectively.

Table 3.3: List of Edge-cuts Obtained

2686-3500 3023-2044 4459-4448 1731-3849
4750-2458 2236-3023 1877-3007 4383-2456
1788-3694 4983-2044 210-3066 266-4857
4707-2868 1039-1943 3081-2456 3868-4650
7617-52 1055-3728 1731-2715

Figure 3.9: Partitioned sub-graph
G

′

3(V
′

3 , E
′

3)
Figure 3.10: Partitioned sub-graph
G

′′

3(V
′′

3 , E
′′

3)

Figure 3.11: Partitioned sub-graph
G

′′′

3 (V
′′′

3 , E
′′′

3)

3.3 Tool for Bibliographic Record Analysis

DBLP dataset is a collection of bibliographic record of computer science publications of var-

ious authors and co-authors. It contains approximately 1.5 million bibliographic records.

This publication records are analyzed by ranking and profiling of authors, building author

publication graph, author conference graph, and author co-author graphs. It is quite dif-

ficult to process these records as a whole. Hence this large dataset needs to partition into

63

Development of Novel Algorithms for Analysis and Visualization of Large Graph

smaller sub-graphs and process further for author co-author relationship visualization and

to measure authors performance. System architecture for analysis of bibliographic record

is discussed as shown in figure 3.12. It consists of major two blocks such as-DBLP pre-

processing and DBLP processing and visualization.

Figure 3.12: System Architecture of Author Information Retrieval

64

Development of Novel Algorithms for Analysis and Visualization of Large Graph

3.3.1 DBLP Pre-processing

DBLP dataset is provided as an input where bibliographic records are stored as XML

nodes. As XML is very concrete and highly canonical, it is less suitable for representation

of multiple interactions between two or more nodes as compared to a network of vertices

and edges (graph). To increase the efficiency of analysis, DBLP dataset is transformed into

the number of graphs, N .

DBLP dataset pre- processing is performed in two steps- author list generation and

partitioning of publication records in a quantum of specified years. These two operations

are simultaneously performed in cooperation to generate a unique list of authors and number

of sub-graphs where each sub-graph contains publications published within a quantum of

specified years.

Input DBLP XML file contains details of publications, each node from XML file represent

a single article or publication and attributes of this node provides various detail of an article.

One sample node from DBLP XML file is shown as below-

<article key=“journals/jmm2/PatilKBK10” mdate=”2017-05-26”>

<author>Varsha H. Patil</author>

<author>Gajanan K. Kharate</author>

<author>Dattatraya S. Bormane</author>

<title>Super Resolution for Fast Transfer of Graphics over Internet.</title>

<pages>71-78</pages>

<year>2010</year>

<volume>5</volume>

<journal>Journal ofMultimedia</journal>

<number>1</number>

<ee>https://doi.org/10.4304/jmm.5.1.71-78</ee>

<url>db/journals/jmm2/jmm5.htmlPatilKBK10</url>

</article>

65

Development of Novel Algorithms for Analysis and Visualization of Large Graph

3.3.1.1 Author List Generation

In DBLP dataset, each node symbolizes a publication and attributes signify details of pub-

lication. A node may have more than one author attributes, in such a case, first author

attribute represents the main author and further author attributes represent co-authors.

From the DBLP dataset, all unique authors are retrieved. A unique id (author id) is as-

signed to each author. author id, author name and partition label represent unique vertex

in a graph as shown in figure 3.13.

Let P= Set of Partitions in span of 5 years

Pa = {p|pǫP and an author is active in p}.

The detail of each author including author id, author name and partition label

L(Pa)ǫl(p) in which an author is active are stored in RDBMS.

A fixed span of a year (quantum) is considered successively from year of first publication

to current year for creating partitions (P). Partition pǫP is sub-graph (a network of author

and co- authors). The process of partitioning is discussed in detail in section 3.3.3.2.

Figure 3.13: System Architecture for Author Information Retrieval

3.3.1.2 Partitioning of Publication Records in Specified Span

As DBLP Dataset is flooded with millions of publications, it is not feasible to store and

process all publications in a single graph due to memory limitations and processing issues.

This limitation is overcome by producing N number of sub-graphs of DBLP dataset based

on the specified quantum of the years. A quantum of 5 years is considered for partitioning

of DBLP dataset into partitions (P). Each publication in DBLP dataset is placed in a

suitable partition based on its publication year. Each partition stores publication in form

66

Development of Novel Algorithms for Analysis and Visualization of Large Graph

of a network of vertices and edges (G(V,E)) where vertices represent author and edges

represent an interaction between authors. Edge label, L (e) where ǫ E, signifies publication

details between two authors. Figure 3.14 shows specified authors representation in each

partition.

Figure 3.14: Specified Author Representation in Each Partition

3.3.2 DBLP Processing and Visualization

DBLP processing comprises of major blocks as - retrieve publication details of author, co-

author list generation based on publication, computation of author performance measure

and visualization of authors publication as shown in figure 3.12.

Publication details of specified authors are retrieved and performance of author is mea-

sured in terms of parameters such as stability, cooperativeness, consistency and contribution

factor. The significance of each parameter is explained in the section 3.3.2.4.

3.3.2.1 Retrieve Publication details of Author

Name of author (selected author) of whose details are to be searched and performance to

be measured) is provided as an input. The specified author name is searched in RDBMS

67

Development of Novel Algorithms for Analysis and Visualization of Large Graph

to obtain authors unique id and partitions in which he/she has published articles. If the

specified author exists then, articles published by an author are retrieved from all partitions

in which, he / she is active.

3.3.2.2 Author List Generation based on Publication

All publications of selected author (the selected author is source node)are obtained from

all partitions Pa, then all co- authors of selected author are determined for all publications

as shown in figure 3.15 where p1, p2 and p3 indicates publications .

Figure 3.15: Author Publication Information Retrieval

3.3.2.3 Visualization of Authors Publication

For visualization of partitioned sub-graphs and publication details of selected author, a vis

Java script based network graph visualization library is used [119]. Authors publication

details are transformed in a form required for vis library to visualize a network graph.

3.3.2.4 Computation of Author Performance measures

Depending upon authors information retrieved, the performance of an author is measured

in accordance with various parameters as stability, cooperativeness, solidity, consistency,

contribution factor and n number of most influential authors in a quantum. Forcoa.net

system computed stability, cooperativeness, and solidity, rest of the parameters such as con-

sistency, contribution factor and n number of most influential authors in a quantum are the

contributions of research work. Computation details of each parameter are discussed below.

68

Development of Novel Algorithms for Analysis and Visualization of Large Graph

1. Stability

The details of publication published together by two authors are represented by an interac-

tion between two vertices in a network. As two authors may have more than one publication

together and this leads to multiple interactions between these two vertices. If the number of

interactions between two vertices is more, then these vertices are considered as more stable

and bond between them is stronger.

For each vertex and tie, two time changing characteristics are defined as [111]-

- Edge stability: Edge stability ES is time span for which tie between two vertices remain

active since first interaction such that ES > 0.

- Vertex stability: Vertex stability V S is a time period for which vertex remains active

since first publication such that V S > 0.

- Self- stability: Self- stability is self- loop (self- edge) which stores information about

publication where no co- author is involved.

2.Cooperativeness

It mainly describes the relationship of vertex v with other vertices having interactions

with it. As vertex stability is independent of the number of edges. Hence, in this case,

important interactions are considered in which adjacent vertex has higher stability.

Cooperativeness for vertex v is computed as [111].

cooperativeness(v) =Σi

√

ES(ei.V S(vi) (3.5)

Where vi and ei are vertices adjacent to vertex v

69

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Algorithm 8 Computation of Cooperativeness

Procedure cooperativeness()

1: for each adjacent vertex vi of v do

2: Calculate vertex stability of vi,V svi

3: Calculate edge stability of ei, ESei where ei = (v, vi)

4: Cooperativeness of (v) + = sqrt (V S(vi).ES(ei))

5: end for endprocedure

3.Solidity

The basic motivation is to select strong ties having at least one interaction in aspecific

period. Solidity considers only ties having at least some minimal stability (stab). Here

we have considered stab=1 month that is tie should have minimum one interaction in the

period of a year.

Solidity(v,stab) =Σi(ES(ei)− stab) (3.6)

4.Consistency

Authors consistency measures variation in the number of an interaction of author v in the

surrounding in each successive span of y years. It helps to determine whether an author is

consistent or not in the selected period of time t.

Compute arithmetic mean by using the equation 3.11

Arithmetic mean =X =
Σx

n
(3.7)

x= Total number of publications by author v in the span of y years

n=Total number of spans in specified time period t.

Standard deviation = σ =

√

Σx2

n
−

(

Σx

n

)2

(3.8)

Consistency of author =
σ

X
× 100 (3.9)

70

Development of Novel Algorithms for Analysis and Visualization of Large Graph

5. Contribution Factor

The contribution factor is the measure of authors contribution for publication. If more

than on author is involved in a publication, then it is essential to measure and distinguish

the contribution of main author and his all co- authors. The value of contribution ranges

in between 0-1.If the author is the only author with no co- author has assisted, then his

contribution is maximum and it is assumed as 1.

If two authors are associated with a paper, then first authors contribution is assumed as

0.6 and the second authors contribution is assumed as 0.4.

If more than two authors are associated in a publication, then first authors contribution

remains same as 0.6 and remaining authors contribution is equally divided to a value 0.4.

For particular publication, Contribution factor of an-author and is computed as,

Contribution Factor(CF) =

CF1 = 1 ifN = 1

CF1 = 0.6, CFi−1 = 0.4/N − 1 ifN ≥ 2

(3.10)

Where N= Number of authors associated in a publication and i varies from 2 to N

The total contribution of author is computed by using equation 3.10

Contributionfactor(C.F.) =ΣCFj (3.11)

where j is number of publications in which author is active.

6. Find most influential authors in a quantum

In analysis of bibliographic record it is required to find most influential authors in a spec-

ified period of time (quantum). Most influential authors are those who have more number

of ties with other authors in same quantum. An Efficient Cut Set and Partitioning Algo-

rithm(CPA) is applied on a graph G(V,E) containing publication records for a specified

quantum. After partitioning G(V,E) into k number of partitions using CPA algorithm, k

number of partitions successfully generated. In each resultant partition, seed vertex rep-

resents the most influential author and remaining vertices represent co-authors along with

71

Development of Novel Algorithms for Analysis and Visualization of Large Graph

their interaction (publication) details.

3.4 Novel Partitioning and Visualization Algorithms

This section discusses the workings of algorithms designed for efficient partitioning of large

graphs into subgraphs, visualization of subgraphs and analysis of bibliographic records in

DBLP dataset.

3.4.1 Algorithm for Partition Building and Edge Cut Computa-

tion

A novel algorithm An Efficient Partition Building and Edge Cut Computation is developed

for efficient partitioning of any large size graph into k number of partitions. This algo-

rithm accepts graph G(V,E) which is to be partitioned and the number of partitions to be

generated as output. This partitioning algorithm comprises of following major steps-

• Seed vertex computation

• Vertex-partition Weight Computation

• Partition building

• Number of edge- cuts computation

Initially, seed vertex for each partition is obtained using algorithm 6 discussed in section

3.1 and each partition grows around its seed vertex. After this vertex-partition weight

is calculated in order to decide suitable partition in which vertex is to be placed using

equation 3.3 and algorithm 7.

Based on vertex partition, weight is obtained and size of the partition, each vertex is

placed in the most suitable partition. Algorithm 10 enlists operations performed during

placement of each non-seed vertex in the most suitable partition. Based on partitions

obtained, numbers of edge-cuts are computed with reference to algorithm 11.

72

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Algorithm 9 Graph Partitioning

Input: G(V,E): Graph, k: number of partitions to be generated
Output: Edge cuts, P : Sub graphs
Procedure GraphPartitioning ()

1: S ← SetDifferencebasedSeedVertexComputation()
2: Capacity of each partition p in P , γ ← 0
3: for i=0 to k-1 do
4: p[i]← {φ}
5: end for
6: if length(V)%2 == 0 then
7: γ ← length(V)/k = (| v | /n)
8: else
9: γ ← (length(V)/k) + 1

10: end if
11: for i=0 to k-1 do
12: ω,pi ← 1.1
13: end for
14: remainingvertices , X = Build Partition(V)
15: for each x in X do
16: X = BuildPartition(X)
17: end for

endprocedure

73

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Algorithm 10 Partition Building

Input: G(V,E): Graph, k: number of partitions to be generated
Output: Edge cuts, P : Sub graphs

1: procedure BuildPartition(G)
2: remaining vertices, X = {φ}
3: for each vertex, v ∈ V do
4: if v ∈ partitionp such that p ∈ P then
5: break
6: else
7: Wv = {φ}
8: possible partitions for v, Tv ← {φ}
9: allocated partition for v, k ← −1

10: for each partition p ∈ P do
11: distance of v to partition p, σv,p ← 1
12: for each vertex, vp ∈ p do
13: if v and vp are adjacent vertices then
14: weight of v for partition p, ωv,p ← 1.0/σv,p

15: Wv[p]← ωv,p

16: else
17: σv,p ← σv,p + 1
18: end if
19: end for
20: end for
21: if length(Wv[p]) > 0 then
22: sort Wv[p] in descending order
23: for each partition p ∈ Wv[p] do
24: if sizeof(p) < γ then
25: k ← p
26: break
27: else
28: for each vertex vx in P do
29: for each partition pi in P do
30: if p== pi then
31: continue
32: else if pi ∈ Wvx[pi] && ωvx,pi > ωvx,p then
33: Add pi to Tv

34: end if
35: end for
36: end for
37: px ← −1

74

Development of Novel Algorithms for Analysis and Visualization of Large Graph

38: if sizeof(Tv) > 0 then
39: sort Tv in descending order
40: for each pi ∈ Tv do
41: if sizeof(pi) < γ then
42: px ← pi
43: break
44: end if
45: end for
46: if px 6= −1 then
47: move vx to px
48: k ← p
49: break;
50: end if
51: end if
52: end if
53: end for
54: end if
55: if k 6= −1 then
56: add v to partition k
57: Wv[k]← ωv,k

58: break
59: else
60: add v to X
61: end if
62: end if
63: end for
64: end procedure

75

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Algorithm 11 Edge Cut Computation

INPUT: P : Partitions, G(V,E): graph
OUTPUT: Edge-cuts: F , Set of edges, n
Procedure Edge-cutCoputation ()

1: F ← {φ}

2: for each Partition pi in P do

3: for each Partition pj in P do

4: for each vertex vi in pi do

5: for each vertex vj in pj

6: if vi and vj are adjacent then

7: add edge e(vi ,vj) to F

8: end if

9: end for

10: end for

11: end for

12: end for

endprocedure

3.4.2 Algorithm for Graph Visualization

An Efficient Graph visualization algorithm is developed to visualize partitioned sub-graphs

generated as an output of partitioning. Graph G(V,E) is visualized as a network where

nodes represent vertices in a graph and connectivity between two vertices represent an edge.

The detailed steps are discussed in algorithm 12.

76

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Algorithm 12 Graph Visualization

INPUT: Graph G(V,E)
OUTPUT: Graph G(V,E) visualized as a network of nodes and edges.
(LV) :Nodes list and edge array (LE):Edge list represents edges between two vertices
ProcedureGraphV isualization()

1: Nodes list in G, LV ← {φ}

2: Edge list in G, LE ← {φ}

3: for each vertex vi in V do

4: α← id(vi) : label(vi)

5: add α to LV

6: end for

7: for each vertex vi in V do

8: for each vertex vj in graph V do

9: if vi and vj are adjacent vertices then

10: β ← label(e(vi, vj))

11: end if

12: end for

13: end for

14: vis(α, β)
endprocedure

3.4.3 Algorithm for Retrieval of Author and Co-Author Publica-

tion Details

This algorithm accepts an author name as input whose publication details and performance

to be measured. This author information retrieval algorithm comprises of the following

major steps.

• DBLP Pre-processing

• DBLP Partitioning and Visualization

77

Development of Novel Algorithms for Analysis and Visualization of Large Graph

DBLP parsing algorithms perform partitioning on bibliographic records and generate the

partition of articles published in the span of 5 years along with it generates author vertex

having attributes as unique id and publication label using algorithm 13

Based on partition label generated, specified author is searched for finding its co-author

and publication information in all partitions using algorithm 14.

Algorithm 13 Authors and Co-authors Information

INPUT: DBLP dataset in xml format
OUTPUT: Partitions of articles published in the span of 5 years, list of authors.
Q = set of quantums as {q1, q2, q3....qn} where qi is fixed span of specified successive years
v = main author for publication
vc= co- author of v
e= details of tie- up between v and vc
author list = {φ}
Procedure AuthorCo-authorsInformation()

1: for each publication record (node), r in DBLP dataset do

2: Extract all attributes of r

3: for each author, a in rdo

4: Extract author name for a

5: a.authorid = unique integer number

6: if a not belongs to authorlist then

7: add a to authorlist

8: Extract year of publication (y) for r

9: Determine partition label l(p) = qi such that qiǫ Q and qi contains y

10: Add r to graph having label l(p), in form of (v, vc = {vc1, vc2..vcn}, e)

11: end if

12: end for

13: end for
endprocedure

78

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Algorithm 14 Extract Coauthors (selected author)

INPUT: selected author,Q, author list
OUTPUT: co-authors of selected author
Ga = set of quantum in which selected author is active
ProcedureGraphV isualization()

1: if sizeof(Ga) > 0 then

2: for each graph Gi in Ga do

3: Set selectedauthor.publications = {φ}

4: for each publication record r in Gi do

5: for each author a in r do

6: if a == selected author then

7: add r to selected author.publications

8: selected author.publications[r].co− authors = {φ}

9: if (a! = selected author) then

10: add a to selected author.publications[r].coathors[]

11: end if

12: end if

13: end for

14: end for

15: end for

16: end for

endprocedure

3.4.4 Algorithm for Visualization of Publication Details and In-

teraction of Author and Co-Author

Vertex- edge graph in which central node represents selected author and remaining nodes

represents co- authors of a selected author. The edge between author and co-author provides

79

Development of Novel Algorithms for Analysis and Visualization of Large Graph

details of publication published together by author and respective co- author with reference

to algorithm 15.

Algorithm 15 Visualization of Author and Co -Author

INPUT: selected author OUTPUT: Graph G(V,E) visualized as a network of nodes and
edges. Central node represents selected author and remaining nodes represents co-authors
of selected author.
LV :Nodes list author name as label
LE : Edge list represents edge between two vertices(publication details)
ProcedureV isualizationofauthorandcoauthor()

1: Node list in G,LV ← {φ}

2: Edge list in G,LE ← {φ}

3: for each publication, r in selected authors.publications do

4: Apply steps 4 to 14 of algorithm 12

5: end for

endprocedure

3.4.5 Algorithm for Computation of Performance Measure Pa-

rameters of Author

After visualization of author and co-author, performance measure parameters of specified

author by retrieving author-id and with reference to equation 3.4 to equation 3.9 and

algorithm 16.

80

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Algorithm 16 Author information retrieval

INPUT: Partitions, author list, author (author name) whose details to be searched
OUTPUT: Details of articles published by specified author

ProcedureAuthorInformationRetrieval()

1: Accept author name whose details to be searched (selected author)

2: Retrieve the id (author id) of selected author from authors list

3: set selected author.publicationcount = 0

4: Extract Coauthors(selected author)

5: if selected author.publicationcount > 0

6: Calculate Cooperativeness

7: Calculate Solidity

8: Find yearly publication details

9: Calculate consistency

10: Calculate contribution factor

11: endif

12: Visualize publication details of selected author in form of vertex edge graph where
each vertex represent author and edge represent publication details. endprocedure

In this chapter novel algorithms for graph partitioning and visualization are proposed. Au-

thor information retrieval algorithm, novel parameters for author performance measure and

visualization algorithms for finding author and co-author interaction are also explained.

81

Chapter 4

RESULTS

Partition Building and Cut-set Computing Algorithm named as “Cut-set and Partitioning

Algorithm (CPA)”, sub-graph visualization algorithm and an author information retrieval

algorithm have been designed, implemented and tested. Results of the system are presented

in this chapter. Experimental setup for testing of the designed algorithm is discussed in

next section.

4.1 Experimental Setup

Performance of “Cut-set and Partitioning Algorithm (CPA)”, tested on standard graph

datasets is listed in table 4.1 and on DBLP Bibliographic record data set.

Benchmark for Graph Partitioning

Chris Walshaws graph partitioning archive is predominantly used to test the performance

of any graph partitioning algorithm. In Chris Walshaws graph partitioning archive, a wide

range of graphs are provided from various domains including DBLP bibliographic record

and VLSI designing [119]. Some of the instances listed in table 4.1 are used for experimental

evaluation of our CPA algorithm.

82

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Table 4.1: List of Bench Mark Graphs

Sr.
No.

Datasets Order Description

1 BCSSTK28 (BC28) 4410 Solid element model
2 BCSSTK29 (BC29) 13992 3D Stiffness matrix
3 BCSSTK30 (BC30) 28294 3D Stiffness matrix
4 BCSSTK31 (BC31) 35588 3D Stiffness matrix
5 BCSSTK32 (BC32) 44609 3D Stiffness matrix
6 BCSSTK33 (BC33) 8738 3D Stiffness matrix
7 BRACK2 (BRCK) 62631 3D Finite element mesh
8 CANT (CANT) 54195 3D Stiffness matrix
9 COPTER2 (COPT) 55476 3D Finite element mesh
10 4ELT (4ELT) 15606 2D Finite element mesh
11 MEMPLUS (MEM) 17758 Memory circuit
12 ROTOR (ROTR) 99617 3D Finite element mesh
13 SHELL93 (SHEL) 181200 3D Stiffness matrix
14 TROLL (TROL) 213453 3D Stiffness matrix
15 WAVE (WAVE) 156317 3D Finite element mesh

4.1.1 Edge Cut Computation

The number of edge-cuts computation is a vital parameter to measure the performance of

any partitioning algorithm in terms of accuracy. The developed CPA algorithm is tested

for 32-way, 64-way and up to 128-way partitioning. Table 4.2 shows comparative results

(number of edge-cuts) obtained after applying CPA.

83

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Table 4.2: Number of Edge Cuts Computation

Data
sets

Number
of Ver-
tices

Number
of
Edges

Number of Edge Cuts in 32 way partitioning Percentage
Reduc-
tion in
Edge-
cuts(Min.
Edge-
cut
Value)

Gree
dy Re-
fine-
ment

Kern
ighan
Lin
Re-
fine-
ment

Boun
dary
Gree
dy Re-
fine-
ment

Boun
dary
Kernighan
Lin
Re-
fine-
ment

Boun
dary
Kern
ighan
Lin
Greedy
Re-
fine-
ment

Novel
(CPA)

4ELT 15606 45878 1834 1833 2028 1894 1894 1305 28.81
BCSS
TK31

35588 579147 45267 46852 46251 45047 45991 26174 41.90

BRA
CK2

62631 366559 22451 20720 29786 19785 21152 13219 33.19

ROT
OR

99617 662431 38241 38312 36834 36498 36512 32784 10.18

Figure 4.1 shows the comparative study of results obtained for datasets listed in table

4.1. It reveals that the number of edge-cuts obtained for CPA is lesser as compared to other

graph partitioning algorithms like Greedy refinement, Kernighan-Lin Refinement, Boundary

Greedy Refinement, Boundary Kernighan-Lin Refinement and Boundary Kernighan-Lin

Greedy Refinement computed by researchers using METIS in [4]. It helps to conclude that

CPA gives better results over earlier techniques.

Figure 4.1: Comparative Analysis of Edge Cuts Computation

84

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 4.2: Edge cuts Computation for 4ELT dataset

4ELT is the dataset of 2-D finite element mesh. Figure 4.2 shows the number of edge-

cuts obtained for the 4ELT dataset in 32-way partitioning. It is noticed that CPA algorithm

gives the lesser number of edge- cuts as compared to existing graph partitioning algorithms.

Figure 4.3: Edge cuts Computation for BCSSTK31 dataset

BCSSTK31 is the dataset of 3-D stiffness matrix. Figure 4.3 shows the number of edge-

cuts obtained for the BCSSTK31 dataset in 32-way partitioning. It is noticed that CPA

algorithm gives the lesser number of edge-cuts as compared to existing graph partitioning

algorithms.

85

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 4.4: Edge cuts Computation for BRACK2 dataset

BRACK2 is the dataset of 3-D finite element mesh. Figure 4.4) shows the number of edge-

cuts obtained for the BRACK2 dataset in 32-way partitioning. It is noticed that CPA

algorithm gives the lesser number of edge- cuts as compared to existing graph partitioning

algorithms.

Figure 4.5: Edge cuts Computation for ROTOR dataset

ROTOR is the dataset of 3-D finite element mesh. Figure 4.5 shows the number of

edge-cuts obtained for the ROTOT dataset in 32-way partitioning. It is noticed that CPA

algorithm gives the lesser number of edge- cuts as compared to existing graph partitioning

algorithms.

Table 4.3 shows computation of edge-cuts for 64- way partitioning by using CPA

algorithm for datasets listed in table 4.3. Comparison values for edge-cuts in 64-way

86

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Table 4.3: Edge-cuts computation with 64-way Partitioning

Datasets Number of Vertices Number of
Edges

Number of edge cuts
in 64way partitioning
by Novel CPA

4ELT 15606 45878 2057
BCSSTK31 35588 579147 48866
BRACK2 62631 366559 27219
ROTOR 99617 662431 79235

partitioning are not available. Therefore comparative analysis is not shown for 64-way

partitioning.

Table 4.4: Percentage Reduction in Edgecuts

Datasets/Partitioning
Algorithms

GR KLR BGR BKLR BKLGR

4ELT 28.84 28.81 35.65 31.10 31.10
BCSSTK31 42.18 44.13 43.41 41.90 43.09
BRACK2 41.12 36.20 55.62 33.19 37.50
ROTOR 14.21 14.43 11.00 10.18 10.21

Table 4.4 shows percentage reduction in edge-cuts computation for datasets listed with

respect to novel CPA algorithm.

Figure 4.6: Percentage Reduction in edgecuts

Quality of CPA algorithm is compared with greedy refinement, Kernighan Lin Refine-

ment, boundary greedy refinement, boundary Kernighan-Lin refinement and boundary

87

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Kerrnighan-Lin greedy refinement. For each dataset listed in table 4.4, the ratio of edge-

cuts obtained for CPA and to all listed algorithms is plotted for 32-way partitions. Figure

4.6 reveals that percentage reduction in edge-cuts varies approximately in the range of 10

to 50.

4.1.2 Visualization of Partitioned graphs

Graph visualization is the visual representation of the nodes and edges of a graph. Visual-

ization tools is an essential layer to identify and analyse the insights from connected data.

Graph visualization is useful because of many reasons like

1. Less Time to Assimilate Information: As the human brain processes visual information

much faster than writing one, Visual data always ensures better understanding and

reduces the time to act.

2. A Better Understanding of Problem: One can achieve better understanding of a prob-

lem by visualizing pattern and contests. Graph visualization not only visualizes rela-

tionships but also assists to understand the contest of data.

3. An Effective Form of Communication: Visual representation is more effective medium

to share the finding and offer more instinctive way to understand the data.

4. Easy To Use: Any user without special technical and programming skills can interact

with graphs visualization.

For better representation and illustration of partitions (subgraphs) generated after parti-

tioning graph G, graph visualization tool was required. Existing tools for graph visualization

are application specific and they required input data in specific forms only. To overcome

this limitation, we developed our own visualization tool using vis java script library [120].

This visualization tool can visualize any graph G (V, E), where V= {v1,v2,v3..} and E=e|

e= (vi,vj ,lij). Where vi,vj and lij are source vertex, destination vertex and label of edge e

respectively. It also concurrently displays visualization for each partition (subgraph) gener-

ated after partitioning of graph G. Figure 4.4 shows a visualization of 4ELT graph having

15606 vertices and 45878 edges, which is partitioned in 32 partitions and figure 4.5(1) to

figure 4.5(32) shows each subgraph visualization.

88

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 4.7: Graph Visualization of 4ELT Graph after Partitioning in 32 Partitions

CPA algorithm is applied on 4ELT graph containing15606 vertices and 45878 edges.

Graph is partitioned into 32 partitions. Figure 4.7 shows visualization of 32 subgraphs

concurrently in a separate tab of the same browser. Figure 4.8(1) to figure 4.8(32) show an

independent visualization of 32 subgraphs.

89

Development of Novel Algorithms for Analysis and Visualization of Large Graph

90

Development of Novel Algorithms for Analysis and Visualization of Large Graph

91

Development of Novel Algorithms for Analysis and Visualization of Large Graph

92

Development of Novel Algorithms for Analysis and Visualization of Large Graph

93

Development of Novel Algorithms for Analysis and Visualization of Large Graph

94

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 4.8: Visualization of 4ELT Subgraphs in 32 partitions

4.2 DBLP Bibliographic Record

DBLP dataset is a collection of bibliographic records in which each record represents details

of publications as discussed in earlier chapter. While analysing the bibliographic records, it

is required to find the details of specific author and ties he/she having with other authors.

The results obtained for each operation in a DBLP processing system are below-

4.2.1 Partitioning of Publication Records

The DBLP dataset used contains 9, 85,177 bibliographic records from the year 1936 to

2017. Whole DBLP dataset was partitioned in the span of successive 5 years (quantum)

and records in each quantum are stored in form of a graph. Table 4.5 shows quantum and

number of publication records in each quantum obtained after splitting of DBLP dataset.

95

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Table 4.5: Quantums And Publication Records in Each Quantum

Sr. No. Quantums Publication Records
in Each quantum

1. 1936-1940 65
2. 1941-1945 48
3. 1946-1950 100
4. 1951-1955 450
5. 1956-1960 1399
6. 1961-1965 3620
7. 1966-1970 5860
8. 1971-1975 9493
9. 1976-1980 11717
10. 1981-1985 17614
11. 1986-1990 30880
12. 1991-1995 57694
13. 1996-2000 93847
14. 2001-2005 154538
15. 2006-2010 118743
16. 2011-2015 276464
17. 2016-2017 202645

Figure 4.9: Record of Number of Publications From 1936 To 2017

From figure 4.9 it is observed that rapid development has been seen in publications by

authors in the span of 1936 to 2017.

96

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Table 4.6: Time Computation for Graph Partitioning for DBLP dataset

Sr. No. Quantums Number of ver-
tices

Number of
Edges

Time Required
for Partitioning
in Seconds

1. 1936-1940 39 68 1.10
2. 1941-1945 28 51 1.89
3. 1946-1950 72 112 1.22
4. 1951-1955 419 551 0.31
5. 1956-1960 1334 1890 1.15
6. 1961-1965 3185 4882 2.24
7. 1966-1970 4963 7960 2.8
8. 1971-1975 8224 13818 5.97
9. 1976-1980 11257 18477 7.90
10. 1981-1985 17872 29827 12.97
11. 1986-1990 33452 56392 67.60
12. 1991-1995 64687 118680 96.61
13. 1996-2000 108391 208131 1349.37

Table 4.6 shows quantums of DBLP dataset along with number of vertices and edges re-

spectively. CPA algorithm is applied on each quantum to generate 5 partitions and the time

required for partitioning is measured. It is observed that for a graph having approximately

30,000 edges, partitioning time required to generate subgraphs lies in seconds which is a

noticeable smaller value.

Table 4.7: Time computation for Graph Partitioning for Benchmark dataset

Sr. No. Dataset Number of ver-
tices

Number of
Edges

Time Required
for Partitioning
in Seconds

1. 4ELT 15606 45878 9.47
2. BCSSTK31 35588 579147 150.44
3. BRACK2 62631 366559 131.11
4. ROTOR 99617 662431 277.52

Table 4.7 shows benchmark dataset and time required for 32-way partitioning in minutes.

From table 4.6 and 4.7, it is observed that for a graph having edges in the range of 30,000

to 45,000, partitioning time required to generate subgraphs lies in minutes and edges more

than approximately 45,000 to 6,50,000 , time required for partitioning lies up to 5 hours

97

Development of Novel Algorithms for Analysis and Visualization of Large Graph

4.2.2 Author List generation

All unique authors are identified and a unique id is assigned to each author which is used to

represent the author as a vertex while storing a record in a graph. Total 10, 37,449 numbers

of authors were obtained in chosen DBLP dataset. Based on Author id, author name and

span of quantums in which author has published a paper, his/ her publication details are

hunt out. The span in which authors published a paper is called as active span. Table 4.8

shows authors and their active spans.

Table 4.8: List of Authors and Their Active Spans

Sr.
No.

Author name Author id Active Span

1. Raghu Ramakrishnan 20081 1991-1995, 1996-2000, 2006-10
2. Jeffer L. Hiest 115342 1991-1995, 1996-2000, 2011-15
3. Umeshwar Dayal 5955 1981-1985, 1986-1990, 1991-1995,

1996-2000, 2001-2005, 2006-10,
2011-2015

4. H. V. Jagdish 19925 1986-1990, 1991-1995, 1996-2000,
2001-2005, 2006-10, 2011-2015,
2016-2017

5. Briam Curelss 81509 1996-2000, 2001-2005, 2006-10,
2011-2015,2016-2017

6. Varsha H. Patil 487724 2006-10
7. Sudipta Mukhopad-

hyay
413180 1996-2000, 2011-2015,2016-2017

8. A. Ben Hamza 29277 2001-2005, 2006-2010, 2011-
2015,2016-2017

9. A.Benjamin Premku-
mar

95929 1996-2000, 2001-2005,2006-2010

10. Brian A. Davey 53233 1991-95, 1996-2000, C2001-05,
2006-10, 2011-15, 2016-20

11. Brian A. Wichmann 43621 1971-75, 1976-80, 1981-85, 1986-
90, 1991-95, 1996-2000, 2006-10

12. Brian Alspach 178604 1976-80 , 1981-85, 1986-90, 1991-
95, 1996-2000, 2001-05, 2006-
10,2011-15, 2016-20

13. Eva K. Lee 244565 2001-05, 2006-10, 2011-15, 2016-
20

14. Junshan Zhang 57214 2006-10, 2001-05, 1996-2000

98

Development of Novel Algorithms for Analysis and Visualization of Large Graph

15. Marcus Brazil 89931 1991-95, 1996-2000, 2006-10,
2011-15, 2016-20

16. Sarath Gopi 15 5595 2006-10
17. Sarbari Gupta 995119 1991-95,1996-2000
18. Sargur N. Srihari 81756 1976-80,1981-85,1986-90,1991-

1996-2000,2006-10
19. Sartaj Sahni 90031 1971-75, 1976-80, 1981-85, 1986-

90, 1991- 95, 1996-2000, 2001-05
20. Saru Kumari 12843 2011-15,2016-20
21. Sarunas Paulikas 994400 2001-05, 2006-10
22. Sarvesh H. Kulkarni 158477 C2006-10:C2001-05
23. Lihua Liu 231581 2001-05, 2006-10,C2011-15 2016-

17
24. Paolo Rocchi 74371 1996-2000, 2001-05, 2006-10,

2011-15, 2016-20
25. Jingguo Ge 134150 2016-20,2011-15

4.2.3 Retrieve Publication Details of Author

For a particular author, publication record is retrieved. A tie between author and co-author

for particular publications is represented in the form of vertices and edges.

99

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 4.10: Publication Record of Selected Author

Figure 4.10 shows publications record of author Umeshwar Dayal represented by the

vertex in red color and his co-authors are in blue color. Edges between red color vertex and

blue vertices represent interaction (publication details) between author and co- authors as

pi, where pi is ith publication of author. Interactions between co-authors Stefan Krompass,

Archana Ganapathi, Janet L. Wiener and Harumi A. Kuno of Umeshwar Dayal having label

p1 i.e. article published in an association with them. Self loop represent there is no co-

author for author for publication pi.

100

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 4.11: Publication Record of Selected Author

Figure 4.11 shows year wise publication graph of author Umeshwar Dayal. It reveals

that his first publication was in the year 1981 with total 3 publications in the same year

and last publication is in year 2012. Publication records retrieved are listed below.

PUBLICATIONS :

1. 2010-02-01:journals/sigops/DayalKWWGK09:Managing operational business intelli-

gence workloads.:92-98:2009:43:Operating Systems

Review:1:http://doi.acm.org/10.1145/1496909.1496927:db/journals/sigops/

sigops43.html♯DayalKWWGK0

COAUTHORS

1. Harumi A. Kuno

2. Janet L. Wiener

3. Kevin Wilkinson

4. Archana Ganapathi

5. Stefan Krompass

2. 2009-12-08:journals/debu/DayalWSC09:Business Processes Meet Operational Busi-

ness Intelligence.:35-41:2009:32:IEEE Data Eng.

101

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Bull.:3:http://sites.computer.org/debull/A09sept/umesh.pdf:db/journals/debu/

debu32.html♯DayalWSC0

COAUTHORS

1. Kevin Wilkinson

2. Alkis Simitsis

3. Mal Castellanos

3. 2017-11-06:journals/sigmod/DayalBBCHLMRSCLJ88:http://doi.acm.org/10.1145/

44203.44208:The HiPAC Project: Combining Active Databases and Timing

Constraints.:51-70:sigmodR/17-1/P051.pdf:1988:17:SIGMOD

Record:1:db/journals/sigmod/sigmod17.html♯DayalBBCHLMRSCLJ8

COAUTHORS

1. Barbara T. Blaustein

2. Alejandro P. Buchmann

3. Upen S. Chakravarthy

4. Meichun Hsu

5. R. Ledin

6. Dennis R. McCarthy

7. Arnon Rosenthal

8. Sunil K. Sarin

9. Michael J. Carey 0001

10. Miron Livny

11. Rajiv Jauhari

4. 017-03-30:journals/tods/DayalB82:On the Correct Translation of Update Operations

on Relational Views.:381-416:TODS7/P381.PDF:1982:7:ACM Trans. Database

Syst.:3:db/journals/tods/tods7.html♯DayalB82:http://doi.acm.org/10.1145/

319732.319740:journals/is/TsichritzisK78:conf/ifip/Armstrong74:journals/tods/

BeeriB79:conf/vldb/BeeriBG78:journals/tods/BancilhonS81:...:...:...:conf/jcdkb/

102

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Clemons78:persons/Codd72:persons/Codd71a:conf/ifip/Codd74:...:journals/tods/

Codd79:books/aw/Date81:...:conf/vldb/DayalB78:journals/is/DayalB82:...:conf/

vldb/EswaranC75:...:journals/tods/Fagin81:journals/is/FurtadoSS79:journals/cacm/

Guttag77:conf/vldb/HammerM75:...:...:...:...:conf/sigmod/PaoliniP77:journals/is/

PelagattiPB78:conf/sigmod/RoweS79:...:conf/sigmod/Stonebraker75:..

COAUTHORS

1. Philip A. Bernstein

5. 2017-05-20:journals/is/DayalB82:On the updatability of network views-extending

relational

view theory to the network model.:29-46:1982:7:Inf.

Syst.:1:db/journals/is/is7.html♯DayalB82:https://doi.org/10.1016/0306-

4379(82)90004-

COAUTHORS

1. Philip A. Bernstein

6. 2007-12-17:journals/debu/DayalR82:Research on uery Optimization at Computer

Corporation of America.:33-37:1982:http://sites.computer.org/debull/

82SEP-CD.pdf:5:IEEE Database Eng.

Bull.:3:db/journals/debu/debu5.html♯DayalR8

COAUTHORS

1. Daniel R. Ries

7. 2011-12-05:journals/csur/Dayal96:Database Technology At A Crossroads.:78:

1996:28:ACM Comput.

Surv.:4es:db/journals/csur/csur28.html♯Dayal96:CSURs1/csur28/A78.pdf:

http://doi.acm.org/10.1145/242224.24232

8. 2017-05-20:journals/dke/DayalER11:Guest editorial: Business process management.:

407-408:2011:70:Data Knowl.

Eng.:5:https://doi.org/10.1016/j.datak.2011.02.001:db/journals/dke/dke70.html♯DayalER1

COAUTHORS

103

Development of Novel Algorithms for Analysis and Visualization of Large Graph

1. Johann Eder

2. Hajo A. Reijers

9. 2011-09-16:journals/debu/DayalKW03:Letter from the Special Issue Edi-

tors.:4:2003:26

:IEEE Data Eng.

Bull.:4:http://sites.computer.org/debull/A03dec/letter.ps:db/journals/debu/

debu26.html♯DayalKW0

COAUTHORS

1. Harumi A. Kuno

2. Kevin Wilkinson

10. 2012-09-17:journals/debu/DayalS93:Issues in Operation Flow Management for

Long-Running

Acivities.:41-44:1993:16:IEEE Data Eng. Bull.:2:DEBU/93JUN-

CD.PDF:db/journals/debu/debu16.html♯DayalS93:http://sites.computer.org/debull/93JUN-

CD.pdf:conf/ride/AhmedADKLS93:conf/sigmod/DayalGHKS93:conf/vldb/DayalHL91:books

/mk/Elmagarmid92:books/mk/GrayR9

COAUTHORS

1. Ming-Chien Shan

11. 2007-12-19:journals/debu/DayalHL91:A generalized Transaction Model for Long-

Running

Activities and Active Databases.:4-8:1991:http://sites.computer.org/debull/91MAR-

CD.pdf:14:

IEEE Data Eng.

Bull.:1:db/journals/debu/debu14.html♯DayalHL9

COAUTHORS

1. Meichun Hsu

2. Rivka Ladin

104

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 4.12: Stability Graph of Umeshwar Dayal

Figure 4.12 shows that selected authors stability is highest in quantum of 2011-15.

Performance of an author is measured with parameters like consistency, stability, coopera-

tiveness, solidity and contribution factor. Table 4.8 shows these parameter values obtained

for 25 sample authors.

105

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Table 4.9: Performance Measures of Authors

Sr. No.
Author
Name

Number
of Co
Authors

Total Num-
ber of Publi-
cations

Performance Measure Parameters
Consistency
in %

Cooperati
veness

Solidity Contribu
tion factor

1. Raghu
Ramakr-
ishnan

10 12 35 26.19 13 9.2

2. Victor
Khomenko

8 9 47 15 4 5.2

3. H. V.
Jagdish

32 29 69 71.81 8 22.4

4. Umeshwar
Dayal

24 11 46 43.19 3 5.8

5. Jiawei
Han

30 24 58 58.56 5 17

6. Jeffery D.
Connor

10 01 0 10.15 0 0

7. Mac
Schwager

8 04 35 10.35 04 2.4

8. Sarvesh
S. Kulka-
rni

3 2 0 1.73 0 1.2

9. Sartaj
Sahni

7 18 77 14.15 1 14.8

10. Mi Ray
Oham

2 2 0 1.41 2 1.2

11. Sagar
Venkatesh
Gubbi

3 3 0 3 0 1.8

106

Development of Novel Algorithms for Analysis and Visualization of Large Graph

12. Surajit
Chaud-
huri

25 33 94 59.31 32 24.2

13. Immanuel
Manohar

2 1 0 2.73 0 0.6

14. Divesh
Srivas-
tava

3 6 33 7.89 0 5.6

15. Hongjun
Lu

11 9 73 38.18 5 5.4

16. Hector
Garcia-
Molina

25 19 62 52.99 5 12

17. Mark A.
Abram-
son

9 7 53 15.6 4 4.5

18. Brian A.
Wich-
mann

4 13 45 5.7 0 11.4

19. Junshan
Zhang

12 10 79 35.21 3 6

20. Eva K.
Lee

38 18 46 15.15 14 8.2

21. Saru Ku-
mari

16 12 33 4 0 2.2

22. Sarbari
Gupta

2 3 33 4 0 2.2

23. Jefferey
W. Wil-
son

1 1 0 4.24 0 0.6

24. Paolo
Amato

7 2 0 13.5 0 0.6

25. Sarath
Gopi

5 2 0 6.24 3 1.2

From table 4.9, it is observed that an author Surajit Chaudhuri is more consistent with

the high contribution factor. Cooperativeness of H. V. Jagdish is highest, it indicates that

his co- authors are very much active for publications.

In the next level, Meichun Hsu is selected for publication information retrieval. His all

co-authors publication details are retrieved and performance measure values are computed.

Table 4.10 shows the performance measure of all his c-authors.

Further co-authors of Umeshwar Dayal are selected one by one, their publication details

107

Development of Novel Algorithms for Analysis and Visualization of Large Graph

are retrieved and performance measure values are computed.

Table 4.10: Performance Measure of Co-Authors of Umeshwar Dayal

Sr. No.
Author
Name

Number
of Co
Authors

Total Num-
ber of Publi-
cations

Performance Measure Parameters
Consistency
in %

Cooperati
veness

Solidity Contribu
tion factor

1. Michael
J. Carey

16 21 74 26.29 1 15.8

2. Stefan
Krompass

6 1 0 9.56 0 0

3. Philip A.
Bernstein

63 43 72 82.65 16 28

4. Meichun
Hsu

8 8 47 9.05 1 5.2

5. Sunil K.
Sarin

2 2 0 1 0 1.6

6. Rivka
Ladin

2 2 0 3.46 2 1.2

7. R. Ledin 0 0 0 0 0 0
8. Johann

Eder
11 8 31 13.21 0 5.6

9. Hajo A.
Rejjers

14 12 47 23.58 2 8

10. Upen S.
Chakravarthy

2 2 0 10.69 1 1.2

11. Mal
Castel-
lanos

13 5 6 27.86 3 3

12. Dennis
R. Mc-
Carthy

1 1 0 1.41 0 0.6

108

Development of Novel Algorithms for Analysis and Visualization of Large Graph

13. Rajiv
Jahuri

0 0 0 0 0 0

14. Arnon
Rosenthal

16 12 41 22.16 4 7.2

15. Miron
Livny

3 2 0 6.97 0 1.2

16. Alejandro
P.Buchmann

5 3 33 2 0 1.8

17. Barbara
T.
Blaustein

4 1 0 5.73 0 0.6

18. Daniel R.
Ries

1 4 0 7.75 1 3.2

19. Archana
Ganap-
athi

0 0 0 0 0 0

20. Janet L.
Wiener

0 0 0 0 0 0

21. Alkis
Simitsis

6 5 6 0.6 18.33 3

22. Ming-
Chien
Shan

0 0 0 0 0 0

23. Kevin
Wilkin-
son

5 3 33 2.83 0 2.2

24. Harumi a.
Kuno

1 2 0 4 1 1.2

Figure 4.13: Publication Record of Selected Author: Meichun Hsu

109

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 4.13 shows publications record of an author Meichun Hsu represented by the ver-

tex which is centrally placed and his co-authors are represented as adjacent vertices. Edges

between central vertex and adjacent vertices represent interaction (publication details) be-

tween author and co- authors as pi, where pi is ith publication of an author. Figure 4.13

reveals that that interactions between co-authors Roelof Vuurboom and Ron Obermarck

having label p3 which indicates p3 article is published in an association with these two

authors.

Figure 4.14: Yearwise Publication of Selected Author: Meichun Hsu

Figure 4.14 shows year wise publication graph of an author Meichun Hsu. It is observed

that his first publication was in the year 1985 and last publication was in the year 1997.

Publication records retrieved are listed below-

Publications

1. 2017-05-27:journals/dpd/HsuK96:https://doi.org/10.1007/BF00204906:ObjectFlow:

Towards a Process Management Infrastructure.:169-

194:DPD/4/P169.pdf:1996:4:Distributed

and Parallel Databases:2:db/journals/dpd/dpd4.htmlHsuK9 COAUTHORS

1. Charly Kleissner

2. 2017-03-30:journals/tods/HsuZ92:Performance Evaluation of Cautious Waiting.:

477-512:1992:17:ACMTrans. Database Syst.:3:db/journals/tods/tods17.htmlHsuZ92:http://

110

Development of Novel Algorithms for Analysis and Visualization of Large Graph

doi.acm.org/10.1145/132271.132275:TODS17/P477.PDF:journals/tods/AgrawalCL87:

journals/tse/AgrawalCM87:conf/podc/BalterBD82:journals/tods/BernsteinSR80:conf/

vldb/CareyS84:journals/cacm/ChesnaisGM83:journals/tods/FranaszekR85:journals/cacm/

EswarranGLT76:conf/ac/Gray78:conf/sigmod/IraniL79:...:journals/tods/KungR81:journals/

jacm/Papadimitriou79b:journals/cacm/PotierL80:journals/tods/RosenkrantzSL78:...:journals/

jacm/TaySG85:journals/tods/TayGS85:.. COAUTHORS

1. Bin Zhang 0004

3. 2012-09-17:journals/debu/HsuOV93:Workflow Model and Execution.:45-

48:1993:16:IEEE

Data Eng. Bull.:2:DEBU/93JUN

-CD.PDF:db/journals/debu/debu16.htmlHsuOV93:http://sites.

computer.org/debull/93JUN-CD.pd

COAUTHORS

1. Ron Obermarck

2. Roelof Vuurboom

4. 2012-09-17:journals/debu/Hsu95:Letter from the Special Issue Editor

. :2-3:1995:18:IEEE Data Eng. Bull.:1:DEBU/95MAR-

CD.PDF:db/journals/debu/debu18

.htmlHsu95:http://sites.

computer.org/debull/95MAR-CD.pd

5. 2017-03-30:journals/tods/HsuC86:Partitioned Two-Phase Locking.:

431-446:TODS11/P431.PDF:1986:11:ACM Trans. DatabaseSyst.:4:db/journals

/tods/tods11.htmlHsuC86:http://doi.acm.org/10.1145/7239.7477:journals

/tods/BayerHR80:journals/csur/BernsteinG81:journals/tods/BernsteinG83:

journals/tods/BernsteinSR80:journalstocs/CareyM86:journals/tse/ChanG85:conf/

hpts/ChanDH85:conf/sigmod/ChanFLNR82:journals/cacm/EswarranGLT76:journals/

tods/GarciaMolinaW82:conf/ac/Gray78:...:...:conf/pods/HsuM83:conf/vldb/

KedemS80:journals/jacm/KedemS83:conf/sigmod/KungP79:journals/cacm

/Lamport78:journals/tods/PapadimitriouK84:journals/jacm/SilberschatzK80: jour-

nals/tse/SilberschatzK82:conf/sigmod/StearnsR8

111

Development of Novel Algorithms for Analysis and Visualization of Large Graph

COAUTHORS

1. Arvola Chan

6. 2017-05-26:journals/ipl/HsuM88:Shifting Timestamps for Concurrency Control in an

Information

Hierarchy.:291-297:1988:27:Inf. Process. Lett.:6:db/journals/ipl/ipl27.

htmlHsuM88:https://doi.org/

10.1016/0020-0190(88)90216- COAUTHORS

1. Stuart E. Madnick

7. 2017-05-20:journals/is/HsuM89:Hierarchical timestamping algorithm.:117-

129:1989:14:

Inf.

Syst.:2:db/journals/is/is14.htmlHsuM89:https://doi.org/10.1016/0306-

4379(89)90040-

COAUTHORS

1. Stuart E. Madnick

8. 2017-05-27:journals/isci/HsuTY90:Concurrent operations in linear

hashing.:193-211:1990:51:Inf.

Sci.:2:https://doi.org/10.1016/0020-0255(90)

90026-7:db/journals/isci/isci51.htmlHsuTY9

COAUTHORS

1. Shang-Sheng Tung

2. Wei-Pang Yang

Table 4.11 shows performance measures of co-authors of Meichun Hsu

112

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Table 4.11: Performance Measures of Co-Authors of Meichun Hsu

Sr. No.
Author
Name

Number
of Co
Authors

Total Num-
ber of Publi-
cations

Performance Measure Parameters
Consistency
in %

Cooperati
veness

Solidity Contribu
tion factor

1. Bin
Zhang

1 1 47 9.05 1 5.2

2. Stuart E.
Madnick

6 16 74 11.76 3 11.6

3. Charly
Kleissner

0 0 0 0 0 0

4. Shang-
Sheng
Tung

0 0 0 0 0 0

5. Ron
Ober-
marck

0 2 0 0 0 2

6. Roelof
Vuru-
boom

0 0 0 0 0 0

7. Wei-Pang
Yang

0 0 0 0 0 0

8. Arvola
Chan

4 4 0.5 4.41 0 2.4

4.2.4 Author and Co-author Hierarchy

Figure 4.15 shows the author and co- author hierarchy. Umeshwar Dayal as the main

author at first level and his all 24 co-authors are shown at the second level. Among those

co-authors, Meichun Hsu is retrieved and explored with his 8 co-authors.

113

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 4.15: Author and Co-Author Hierarchy

4.2.5 Most Influential Author Retrieval

In an analysis of bibliographic record, it is required to find authors who are most active

in particular period of time. These active authors are known as most influential authors

for a selected period of time. To find the most influential author, CPA algorithm is to a

graph containing bibliographic records. After k partitioning, each partition generates most

influential author. Experimentation is performed on DBLP dataset for span of years 1991 to

1995 to find the 10 most influential authors in the span. This span contains 57694 authors

and 118680 publication records. To find the 10 most influential author, CPA is applied

and 10 partitions are generated as shown in figure 4.16(1) to 4.16(10). Figure 4.16 (1)

to 4.16(10) reveals that the centrally placed vertex indicates author id of most influenced

114

Development of Novel Algorithms for Analysis and Visualization of Large Graph

author and its connected vertices show auhor id of all co-authors network.

115

Development of Novel Algorithms for Analysis and Visualization of Large Graph

116

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 4.16: 10 Most Influential Authors Id of Span1991 - 1995

Along with author id author names of most influential authors from a specified span are

also retrieved. CPA algorithm is applied for a span of 1986 to 1990. This span contains

13566 authors and 30880 publication records. 9 partitions are generated to retrieve the 9

most influential authors.

117

Development of Novel Algorithms for Analysis and Visualization of Large Graph

118

Development of Novel Algorithms for Analysis and Visualization of Large Graph

Figure 4.17: 9 Most Influential Authors of Span 1986 - 1990

Figure 4.17(1) to 4.17(9) reveals 9 most influential authors retrieved from 9 partitions

and their interaction network with co-authors. Figure 4.17(3),4.17(5),4.17(6) are attached

separately.It is noticed that 9 most influential are - Tony Woven, Vivekre Fk, Naga Alon,

Herbert Edelsbrunner, Paul Erds, Sussane M. Humphery, Alex M. Andrew, Shigeo.

In this chapter results of novel CPA algorithm, graph visualization algorithm and author

information retrieval algorithm are discussed in detail. Performance analysis of novel al-

gorithms is studied. Performance analysis is carried out for graph benchmark dataset and

DBLP dataset. From performance analysis it has been observed that novel algorithms

developed provides betterment in results.

119

Chapter 5

Conclusions and Future Scope

In order to investigate the performance of designed algorithms, we carried out experiments

on benchmark graphs. This chapter summarizes the research work done, conclusions based

on experimentation performed and provides important directions for future work.

5.1 Conclusions

The central problem addressed in this thesis is partitioning a large graph into smaller sub-

graphs with minimum edge-cuts in order to achieve better insights of information stored

in a large graph with efficient visualization tools. The research presents the solution for

analysis and Visualization of sizably voluminous graphs. For analysis of any large size

graph, a partitioning algorithm and visualization tool are developed. The technical details

of the novel efficient algorithm, visualization tool, and application of this algorithm and

visualization tool are discussed.

1. Cut-set and Partitioning Algorithm (CPA): More efficient algorithm is devel-

oped. It performs partitioning of a large graph into sub- graphs based on stronger

connected components and set differences of degrees of vertices. The performance

of the algorithm is evaluated using standard datasets as input which are considered

as benchmarks for assessment of graph partitioning algorithms. It is observed that

number of edge-cuts required for partitioning is comparatively much lesser. The per-

centage reduction in edge-cuts is in the range of 10% to 50%. Time required

for execution is lesser as compared to existing graph partitioning techniques. It is fur-

120

Development of Novel Algorithms for Analysis and Visualization of Large Graph

ther observed that for a graph of approximately 30,000 edges, partitioning time

required is just 13 seconds.

2. An Effective Visualization tool is developed for visualization of partitioned sub-

graphs. This visualization tool is capable of dynamic visualization of 128 sub-graphs

obtained after partitioning a large graph. The tool avoids clutters of edges and ef-

ficiently utilizes display area, provide better and quick visualization of a graph with

vertex labels and edge labels.

3. The core conclusion drawn from research work is finding most connected components

from the set of vertices and computation of set difference of degree of vertices lead to

an efficient partitioning of large graph into smaller sub graphs with least edge-cuts.

4. An Author’s Publication Information Retrieval system is developed for find-

ing publication details of particular author and interactions with co- authors. The

visualization tool is applied over DBLP dataset to analyze authors network in bib-

liographic records and it exhibits correct details of chosen author including his/her

co-authors and publication details. Experimental results reveal that DBLP processing

system retrieves the authors publication details efficiently and quickly.

• The developed algorithm quickly finds and visualizes publication details of a selected

author from millions of bibliographic records.

• Estimates the authors performance by calculating values of performance estimation

parameters like stability, cooperativeness, solidity, and consistency and contribution

factor.

• The performance values reveal that authors consistency is observed in high percentage.

It is observed that an author with good consistency has a good contribution factor too.

Contribution factor is efficiently computed which gives contribution as main author

and as co- authors too.

• The n most influential authors in a specified period of time are found out efficiently

by using Cut-set and Partitioning Algorithm (CPA) from a specified span of

DBLP dataset.

121

Development of Novel Algorithms for Analysis and Visualization of Large Graph

5.2 Future Scope

We provide few research directions as future scope of the work.

• Our developed Cut-set Partitioning Algorithm (CPA) efficiently performs partitioning

of any graph, computes minimum number of edge-cuts in lesser time. Performance

of algorithm can be further improved with parallel implementation with concurrent

execution of independent partition.

• In case of biological databases link Gnome, it is observed that an efficient tool is

required for some complex task to name few- computing range of functional attributes,

visualizing biological insights for large proteomic, to extract single gene product that

may be annoted to multiple geo terms, to compute number of unique features with

ability to tailor annotation sets using multiple filtering options, to construct subset of

geo known as geo- slim to map up annotations allowing a general overview of attributes

of a set of proteins. This research work can be extended further for developing a tool

to support such complex tasks.

• Social network carries huge information in various forms. Our developed tool can

be better utilized for retrieving information with several parameters and effectively

visualize the information.

122

Research Publications

Patent

1. Ms. Swati K. Bhavsar, Dr. Varsha H. Patil, “IoT Based System for Computing

Human Density for Critical Situation Recognition and Precaution for Avoiding Acci-

dent”, patent Reference No. 201721046250, Application Number : No.201721046250A

https://ipindiaservices.gov.in/PublicSearch/PublicationSearch/ApplicationStatus

Copyrights

1. Ms. Swati K. Bhavsar, Dr. Varsha H. Patil, “Development of Novel algorithm for

Analysis and Visualization of Large Graph”, Registration No. : L-69172/2017

2. Ms. Swati K. Bhavsar, Dr. Varsha H. Patil, “An Author Publication Information

Retrieval Algorithm”, Registration No: L-76338/2018

3. Ms. Swati K. Bhavsar, Dr. Varsha H. Patil, “An Efficient Partition Building and

Cut set Computing Algorithm(AEPBCCA)”, Copyright Diary Number: 10787/2018-

CO/L

4. Ms. Swati K. Bhavsar, Dr. Varsha H. Patil, “An Efficient Graph Visualization Algo-

rithm ”, Copyright Diary Number: 10808/2018-CO/L

Paper Published

1. Swati K. Bhavsar, Dr. Varsha H. Patil, “Large Graph Analysis and Visualization in

Graph Mining: A Survey”, I J C T A, 10(8), International Science Press, ISSN: 0974-

5572, December 2016, pp. 369-376,Poster presented at 12th Inter-Research-Institute

Student Seminar in Computer Science, IRISS Conference 2018.

123

Development of Novel Algorithms for Analysis and Visualization of Large Graph

2. Swati K. Bhavsar, Dr. Varsha H. Patil, “Large Graph Analysis and Visualization”,

cPGCON-2016, Research Scholar forum, Savitribai Phule Pune University.

3. Swati K. Bhavsar, Dr. Varsha H. Patil, “Image Segmentation using Graph analysis”,

ICCCC- 2017.ISBN: 978-93-86447-49-4, pp 135-138.

4. Swati K. Bhavsar, Dr. Varsha H. Patil, “Graph Visualization System for Human

Density Computation using IoT”, ICICI 2018, Coimbatore, Springer series, India,

August 2018.

5. Swati K. Bhavsar, Dr. Varsha H. Patil , “Graphviz: An Interactive Visualization Tool

for Densed Graphs”, Accepted for International Conference on Recent Innovations in

Engineering and Technology Crete, Greece, October 2018.

6. Swati K. Bhavsar, Dr. Varsha H. Patil, “Graph Partitioning and Visualization in

Graph Mining: A Survey”, [submitted to IGI: Data Mining and Databases]

7. Swati K. Bhavsar, Dr. Varsha H. Patil, “An Efficient Cut-set Computation, Parti-

tioning and Visualization tool for Large Graph”, [submitted to IEEE Transactions:

Knowledge and Data Engineering]

124

References

[1] Jose F. Rodrigues, Hanghang Tong, Jia Yu Pan, Agma J. M. Traina, Caetano Traina,

Christos Faloutsos, “Large Graph Analysis in the GMine System”, IEEE Transactions

on Knowledge and Data Engineering, Vol.25, No.1, January 2013, pp.106-118.

[2] Chaw Wei, Ou, Sanjay Ranka, “Parallel Incremental Graph Partitioning”, IEEE trans-

actions on Parallel and Distributed Systems, Vol 8, No. 8, August 1997.

[3] C. R. Palmer, C. Faloutos, “Electricity Based External Similarity of Categorical At-

tributes”, Proc Seventh Pacific Asia Conf. Advances in Knowledge Discovery and Data

Mining, 2003, pp. 486-500.

[4] G. Karypis, V. Kumar, “Multilevel Graph partitioning schemes”, Proc. IEEE/ ACM

conf. parallel processing, 1995, pp. 113-122.

[5] Inderjit S. Dhilon, Yuqiang Guan, Brian Kulis, “Weighted Graph Cuts without Eigen-

vectors: A Multilevel Approach”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol.29, No.11, November 2007, pp. 1944-1957.

[6] Mahmudar Rahman, Mansurul Alam Bhuiyan, Mohammad Al Hassan “GRAFT: An

efficient Graphlet counting method for Large Graph Analysis”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol.26, No.10, October 2014, pp. 2466-2478.

[7] Vladimir Batagelj, Franz J. Bran denburg, Water Didimo,“XY Clustering and Hybrid

Visualization Technique ”, IEEE Transactions on Knowledge and Data Engineering,

Vol. 17, November 2011, pp. 1587-1598.

125

Development of Novel Algorithms for Analysis and Visualization of Large Graph

[8] James Abello, Frank Van Ham, Neeraj Krishan, “ASK GraphView: A Large Scale

Graph Visualization System”, IEEE Transactions on Visualization and Computer

Graphics”, Vol. 12, No.5, pp. 1587-1598 October 2006.

[9] J. Zhang. The interaction of internal and external representations in a problem solving

task. Proc. Thirteenth Annual Conference of Cognitive Science Society, 1991.

[10] Weiwei Cui “A Survey on Graph Visualization”, Hong Kong University of Science and

Technology Clear Water Bay, Kowloon, Hong Kong, pp. 1-52

[11] S. Palmer and I. Rock., “Rethinking perceptual organization: The role of uniform

Connectedness”, Psychonomic Bulletin Review, 1994, pp. 29-55.

[12] H. Motoda, “What Can We Do with Graph-Structured Data A Data Mining Perspec-

tive”, Springer 2006, pp. 1-20

[13] N. S. Ketkar, L.B.Holder and OJ. Cook, “Empirical Comparison of Graph Classification

Algorithms”, IEEE, 2009.

[14] S. Kim, “Graph theoretic sequence clustering algorithms and their applications to

genome comparison”, in: J.T.L. Wang, C.H. Wu, P.P. Wang (Eds.), Computational

Biology and Genome Informatics, World Scientific Publishing Company, 2003, pp. 81-

116.

[15] R. Kannan, S. Vempala, A. Vetta, “On clusterings good, bad and spectral”, Journal

of the ACM 51 (3) (2004) pp. 497-515.

[16] J. Callut, K. Franisse, M. Saerens and P. Dupont, “Semi-supervised Classification

from Discriminative Random Walks”, Lecture Notes in Artificial Intelligence No. 5211,

Springer, 2008, pp. 162-177.

[17] Geoffrey Ellis and Alen Dix. : Taxonomy of Clutter Reduction for Information Visual-

ization, IEEE Transactions on Visualization and Computer Graphics, 13(6), 2007, pp.

1216- 1223.

[18] M. R. Garey and D. S. Johnson., “Crossing number is NP-complete.”, SIAM Journal

on Algebraic and Discrete Methods, 4(3), 1983, pp. 312-316.

126

Development of Novel Algorithms for Analysis and Visualization of Large Graph

[19] Meng Qi Yelena Wu, Robert Faris, Kwan- Liu Ma, “Visual Exploration of Academic

Career Paths”, 2013, IEEE/ ACM International Conference on Advances in Social

Networks Analysis and Mining, August 2015, pp. 779-786.

[20] H. Kashima and A. Inokuchi, “Kernels for graph classification”, ICDM, Workshop on

Active Mining 2002.

[21] Raghavendra, P. , “Optimal algorithms and inapproximability results for every CSP”,

In Proceedings of the 40th Annual ACM Symposium on theory of Computing, 2008,

pp. 245-254.

[22] J. Callut, K. Fran90isse, M. Saerens and P. Dupont, “Semi-supervised Classification

from Discriminative Random Walks”, Lecture Notes in Artificial Intelligence No. 5211,

Springer, 2008, pp. 162-177

[23] Orlin, J. B. (2013). “Max flows in O(nm) time, or better”, . Proceedings of the 2013

Symposium on the Theory of Computing, pp. 765-774.

[24] J. E. Beasley, editor, Advances in Linear and Integer Programming”, Oxford Science,

1996.

[25] WilliamW. Hager Dzung T. Phan Hongchao Zhang, “ An Exact Algorithm For Graph

Partitioning ” , Springer and Mathematical Optimization Society 2011, pp. 1-10.

[26] Daniel Delling and Renato F. Werneck, “Faster Customization of Road Network”,

International Symposium on Experimental Algorithms, springer, pp. 30-42.

[27] Alex Pothen, Horst D. Simon, and Kang-Pu Liou, “Partitioning sparse matrices with

eigenvectors of graphs. SIAM Journal of Matrix Analysis and Applications”, 11(3):

1990, pp. 430-452.

[28] Koulamas, Christos. “A new constructive heuristic for the flowshop scheduling prob-

lem.” European Journal of Operational Research 105.1 ,1998, pp. 66-72.

[29] Bruce Hendrickson, Robert Leland, “A multilevel algorithm for partitioning

graphs”, Supercomputing ’95 Proceedings of the 1995 ACM/IEEE conference on

Supercomputing,ISBN:0-89791-816-9

127

Development of Novel Algorithms for Analysis and Visualization of Large Graph

[30] T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization. In 6th

SIAM Conf. Parallel Processing for Scientific Computing, 1993, pp. 445-452.

[31] Bruce Hendrickson and Rober Leland, “An improved spectral graph partitioning al-

gorithm for mapping parallel computations” Technical Report SAND92-1460, Sandia

National Laboratories, 1992.

[32] Alex Pothen, H. D. Simon, and Lie Wang, “ Spectral nested dissection”, Technical Re-

port 92-01, Computer Science Department, Pennsylvania State University, University

Park, PA, 1992.

[33] Gary L. Miller, Shang-Hua Teng, and Stephen A., “ A unified geometric approach

to graph separators”, In Proceedings of 31st Annual Symposiumon Foundations of

Computer Science, 1991, pp. 538-547.

[34] B. W. Kernighan and S. Lin., “An efficient heuristic procedure for partitioning graphs”,

The B System Technical Journal, 1970.

[35] A. George, “ Nested dissection of a regular finite-element mesh”, SIAM Journal on

Numerical Analysis, 1973, pp. 345-363.

[36] A. George and J. W.-H. Liu. , “Computer Solution of Large Sparse Positive Definite

Systems”, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[37] George Karypis and Vipin Kumar, “Multilevel Graph Partitioning Schemes”, pp. 1-13.

[38] Alex Pothen, Horst D. Simon, and Kang-Pu Liou., “Partitioning sparse matrices with

eigenvectors of graphs”, SIAM Journal of Matrix Analysis and Applications, 11(3),

1990, pp. 430-452.

[39] Chao-Wei Ou and Sanjay Ranka “Parallel Incremental Graph Partitioning” IEEE

Transactions Onparallel And Distributed Systems, Vol. 8, No. 8, August 1999.

[40] Stephan T. Barnad, Horst D. Simon, “Fast multilevel Implementation of recursive

spectral bisection for partitioning unstructured problems, Concurrency: Practice and

Experience”, Vol6 (2) ,1994, pp. 101-117.

128

Development of Novel Algorithms for Analysis and Visualization of Large Graph

[41] Tefeng Chen , Bo Li, “A Distributed Graph Partitioning Algorithm for Processing

Large Graphs”, IEEE Symposium on Service-Oriented System Engineering (SOSE),

2016.

[42] Maria Predari, Aurlien Esnard, “A k-Way Greedy Graph Partitioning with Initial

Fixed Vertices for Parallel Applications”, 24th Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing (PDP), 2016.

[43] Angen Zheng, Alexandros Labrinidis, Panos K. Chrysanthis, “Argo: Architecture-

aware graph partitioning”, IEEE International Conference on Big Data, 2016.

[44] Lyu-Wei Wang, Shih-Chang Chen, Wenguang Chen, Hung-Chang Hsiao, Yeh-Ching,

“ BiFennel: Fast Bipartite Graph Partitioning Algorithm for Big Data”, IEEE Inter-

national Conference on Smart City/SocialCom/SustainCom, 2015.

[45] Michael Ley, “DBLP Some Lessons Learned”.

[46] Alpert C. J., Kahng, “Recent Direction in Netlist Partitioning: A Survey”, the VLSI

Journal Vol. 19, 1-2, 1995, pp. 1-81.

[47] Lawrence B. Holder , Diane J. Cook , Surnjani Djoko, “Substructure Discovery In

The Subdue System” , In Proc. of the AAAI Workshop on Knowledge Discovery in

Databases, 1994.

[48] Luc Dehaspe , Hannu Toivonen , Ross Donald King , “Finding frequent substructures

in Chemical compounds”, 1998.

[49] Akihiro Inokuchi, Takashi Washio and Hiroshi Motoda, “An apriori-based algorithm

for mining frequent substructures from graph 204 T. Ramraj and R. Prabhakar /

Procedia Computer Science 47 (2015) 197 204 data”, Proceedings of the 4th European

Conference on Principles of Data Mining and Knowledge Discovery.

[50] M.Kuramochi and G.Karypis, “ Frequent subgraph discovery”, In Proc of ICDM, 2001.

[51] Xifeng Yan, Hong Cheng, Jiawei Han, Philip S. Yu, “Mining significant graph pat-

terns by scalable leap search”, Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, 2008

129

Development of Novel Algorithms for Analysis and Visualization of Large Graph

[52] M.J.Zaki, “Efficiently mining frequent trees in a forest”, In Proc 2002, ACM SIGKDD

Int Conf. Knowledge Discovery and Datamining (KDD02), 2002.

[53] J.Huan, W.Wang and J.Prins, “Efficient mining of frequent subgraph in the presence

of isomorphism”, In Proc. 2003 Int Conf. Data Mining (ICDM03).

[54] J.Huan, W.Wang and J.Prins, “SPIN: Mining maximal frequent subgraphs from graph

databases’, In Proc. 2004. ACM SIGKDD Int Conf. Knowledge Discovery and Datamin-

ing (KDD04), 2004.

[55] M.Kuramochi and G.Karypis, “Finding frequent patterns in a large sparse graph”,

Journal Data Mining and Knowledge Discovery, Volume 11 Issue 3, November 2005.

[56] S.Nijssen and J.Kok, “A quickstart in frequent structure mining can make a differ-

ence”, In Proc. 2004. ACM SIGKDD Int Conf. Knowledge Discovery and Data mining

(KDD04), 2004.

[57] S. B. Akers, “ Binary Decision Diagrams”, IEEE Transaction Computers, Vol C 27,

no. 6, June 1978, pp. 509-516.

[58] David A. Papa and Igor L. Markov, “Hypergraph Partitioning and Clustering”, Uni-

versity of Michigan, EECS Department, Ann Arbor, MI 48109-2121, pp. 1-38.

[59] T.H. Huang, M.L. Huang, “Analysis and Visualization of Co-authorship Networks

for Understanding”, Academic Collaboration and Knowledge Domain of Individual

Researchers, Int. Conference on Computer Graphics, Imaging and Visualization, 2006,

pp. 18-23.

[60] Milos Kudelka, Zdenek Horak, Vaclav Snasel and Ajith Abraham, “Social Network

Reduction Based on Stability ” IEEE, Computer Society, 2010.

[61] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis, “Introduction to

Parallel Computing: Design and Analysis of Algorithms”, Benjamin/Cummings Red-

wood City, CA, 1994.

[62] N.Vanetik et.al. , “Computing frequent graph patterns from semi structured data”, In

Proceedings 2002 IEEE International Conference on Data Mining. ICDM-2002.

130

Development of Novel Algorithms for Analysis and Visualization of Large Graph

[63] Geoffrey Ellis and Alen Dix., “Taxonomy of Clutter Reduction for Information Visu-

alization”, IEEE Transactions on Visualization and Computer Graphics, 13(6), 2007,

pp. 1216- 1223.

[64] D. Eppstein, M.T. Goodrich, and J.Y. Meng., “Confluent Layered Drawings Algorith-

Mica”, 47(4): 2007, pp. 439-452

[65] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd, “Flow Map Layout”, IEEE

Symposium on Information Visualization, INFOVIS 2005, pp. 219-24.

[66] N. Wong, S. Carpendale, and S. Greenberg, “Edge lens: an interactive method for

managing edge congestion in graphs, Information Visualization, INFOVIS 2003 pp.51-

58.

[67] D. Holten. Hierarchical Edge Bundles, “Visualization of Adjacency Relations in Hier-

archical Data”, IEEE Transactions on Visualization and Computer Graphics, 12(5),

2006, pp. 741-748.

[68] Karpys G., Kumar S., “A fast and High Quality Multilevel scheme for Partitioning

Irregular Graphs”, SIAMJ. Science Computer., USA, 1998, pp. 359-392.

[69] Kernighan, B. W. Lin, S, “An efficient Heuristic Procedure for Partitioning graphs”,

The Bell System Technical Journal, V 49, no. 2, 1970, pp. 291-307.

[70] Fiduccia C. M., Mattheyeses R. M, “A Linear Time Heuristic for Improving Network

Partitions”, In Proceeding of 19th Design Automation Conference, NJ, USA, IEEE

Press, 1982, pp. 175-191.

[71] Q.V. Nguyen and M.L. Huang. “A space-optimized tree visualization”, INFOVIS IEEE

Symposium on Information Visualization 2002, pp. 85-92.

[72] K. Andrews and H. Heidegger. Inforation slices, “Visualising and exploring large hi-

erarchies using cascading, semi-circular discs”, Proc of IEEE Infovis 98 late breaking

Hot Topics 1998, pp. 9-11.

[73] EM Reingold and JS Tilford, Tidier Drawings of Trees”, IEEE Transactions on Soft-

ware Engineering, 7(2), 1981, pp. 223228.

131

Development of Novel Algorithms for Analysis and Visualization of Large Graph

[74] T.J. Jankun-Kelly and K.L. Ma. Moire, “Graphs: Radial Focus+ Context Visualization

and Interaction for Graphs with Visual Nodes”, Proceedings of the IEEE Information

Visualization 2003 Conference, Seatle, USA, 2003.

[75] P. Eades, W. Lai, K. Misue, and K. Sugiyama, “ Layout Adjustment and the Mental

Map”, Journal of Visual Languages and Computing, 6(2), 1995, pp. 183-210.

[76] B. Johnson and B. Shneiderman, “Tree-Maps: a space-filling approach to the visual-

ization of hierarchical”

[77] JJ VanWijk and H. Van de Wetering. Cushion, “tree maps: visualization of hierarchical

information”, Information Visualization, 1999.(Info Vis 99) Proceedings. 1999 IEEE

Symposium on, 1999, pp. 73-78.

[78] P. Young, “Three Dimensional Information Visualisation”, Computer Science Technical

Report, 1996, pp. 12-16.

[79] N. Henry and J.D. Fekete. MatrixExplorer, “A Dual-Representation System to Explore

Social Networks”, IEEE Transactions on Visualization and Computer Graphics, 12(5),

2006, pp. 677-684.

[80] R.A. Becker, S.G. Eick, and A.R. Wilks., “Visualizing network Data”, IEEE Transac-

tions on Visualization and Computer Graphics, 1(1) 1995, pp.16-28.

[81] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd., “Flow Map Layout”, IEEE

Symposium on Information Visualization, 2005. INFOVIS 2005, pp. 219-224.

[82] D. Eppstein, M.T. Goodrich, and J.Y. Meng, “Confluent Layered Drawings.”, Algo-

rithmica, 47(4), 2007, 439-452.

[83] D. Holten. Hierarchical Edge Bundles, “Visualization of Adjacency Relations in Hier-

archical Data”, IEEE Transactions on Visualization and Computer Graphics, 12(5),

2006, pp. 741-748.

[84] N. Wong, S. Carpendale, and S. Greenberg, “Edgelens: an interactive method for

managing edge congestion in graphs”, Information Visualization, 2003. INFOVIS 2003,

pp. 51-58.

132

Development of Novel Algorithms for Analysis and Visualization of Large Graph

[85] JS Risch, DB Rex, ST Dowson, TB Walters, RA May, and BD Moon, “The

STARLIGHT Information Visualization System”, Proceedings of the IEEE Conference

on Information Visualization, 1997, pp. 42-49.

[86] M. Nollenburg and A. Wolff, “ A mixed-integer program for drawing high-quality metro

maps”, Proc. of the 13th International Symposium on Graph Drawing, 2005.

[87] K. Sugiyama and K. Misue, “Visualization of structural information: automatic draw-

ing of compound digraphs. Systems, Man and Cybernetics”, IEEE Transactions on,

21(4), 1991, pp. 876-892.

[88] G.G. Robertson and J.D. Mackinlay, “The document lens”, Proceedings of the 6th

annual ACM symposium on User interface software and technology,1993, pp. 101-108 .

[89] G.H. Golub and C.F. Van Loan., “Matrix computations.”, Johns Hopkins University

Press Baltimore, MD, USA, 1996.

[90] G. Karypis and V. Kumar. MeTis, “ Unstructured Graph Partitioning and Sparse

Matrix Ordering System”, Version 2.0. University of Minnesota, June, 1995.

[91] S.T. Barnard, “ PMRSB: parallel multilevel recursive spectral bisection”, Proceedings

of the 1995 ACM/IEEE conference on Supercomputing (CDROM), 1995

[92] B.W. Kernighan and S. Lin , “An efficient heuristic procedure for partitioning graphs”,

Bell System Technical Journal, 49(2), 1970, pp. 291-307.

[93] G. Chartrand and O.R. Oellermann, “Applied and Algorithmic Graph Theory”,

McGraw-Hill New York, 1993.

[94] B. Hendrickson and R. Leland., “A multilevel algorithm for partitioning graphs”, Proc.

Supercomputing, 95, 1995.

[95] G. Karypis and V. Kumar., “Multilevel Algorithms for Multi-Constraint Graph Parti-

tioning ”, Supercomputing, 1998. IEEE/ACM Conference, pp. 28-38.

[96] M. Delest, F. Bordeaux, J.M. Fedou, N.S. Antipolis, F. Jean-Marc, G. Melancon, and

F. Montpellier, “A Quality Measure for Multi-Level Community Structure”, SYNASC

8th International Conference, 2006.

133

Development of Novel Algorithms for Analysis and Visualization of Large Graph

[97] S. Mancoridis, BS Mitchell, Y. Chen, and ER Gansner, “Bunch: a clustering tool for

the recovery and maintenance of software system structures. Software Maintenance.

[98] F. van Ham, J.J. van Wijk, and T.U. Eindhoven., “Interactive Visualization of Small

World Graphs. Information Visualization”, 2004, INFOVIS 2004. IEEE Symposium

on, 2004, pp.199-206.

[99] Q.W. Feng, R.F. Cohen, and P. Eades., “How to Draw a Planar Clustered Graph.

Proceedings of the First Annual International Conference on Computing and Combi-

natorics”, 1995, pp. 21-30.

[100] P. Eades and Q.W. Feng, “Multilevel Visualization of Clustered Graphs”, Graph

Drawing, Proc. 4th Int. Symp. GD, 1996, pp. 101-112.

[101] P. Eades, Q.W. Feng, and X. Lin, “Straight-Line Drawing Algorithms for Hierarchical

Graphs and Clustered Graphs”, Proceedings of the Symposium on Graph Drawing

1996., pp. 113-128

[102] J. Ho and S.H. Hong, “Drawing Clustered Graphs in Three Dimensions”, 2006

[103] P. Eades and Q.W. Feng, “Multilevel visualization of clustered graphs”, Graph Draw-

ing, Proc. 4th Int. Symp. GD,1996, pp. 101-112.

[104] J. Ho and S.H. Hong, “Drawing Clustered Graphs in Three Dimensions”, 2006.

[105] John T. Stasko Ji Soo Yi, Youn ah Kang and Julie A. Jacko, “Toward a Deeper Under-

standing of the Role of Interaction in Information Visualization”, IEEE Transactions

on Visualization and Computer Graphics, 13(6), 2007, pp. 1224-1231.

[106] C. Ahlberg and B. Shneiderman,“ Visual Information Seeking: Tight Coupling of

Dynamic Query Filters With Starfield Displays”, Conference on Human Factors in

Computing Systems, 1994.

[107] P. A. Eades,“ A heuristic for graph drawing”, In Congressus Numerantium, volume

42, 1984, pp. 149-160.

134

Development of Novel Algorithms for Analysis and Visualization of Large Graph

[108] G.G. Robertson, J.D. Mackinlay, and S.K. Card. “Cone Trees: animated 3D visu-

alizations of hierarchical information”. Proceedings of the SIGCHI conference on Hu-

manfactors in computing systems: Reaching through technology, 1991, pp. 189-194.

[109] X. Liu, J. Bollen, M.L. Nelson, H. Van de Sompel, “Co-Authorship Networks in the

Digital Library Research Community”, Information Processing Management, vol. 41

2005.

[110] Y. Han, B. Zhou, J. Pei, Y. Jia, “Understanding Importance of Collaborations in Co-

authorship Networks, SIAM Int. Conference on Data Mining”, 2009, pp. 1112-1123.

[111] Zdenek Horak, Milos Kudelka, Vaclav Snasel, Ajith Abraham, “Forcoa.NET: An In-

teractive Tool for Exploring the Significance of Authorship Networks in DBLP Data”,

2011 IEEE, pp. 261-267.

[112] Hendrickson, Bruce. “Chaco: Software for Partitioning Graphs”.

[113] Karypis, G.; Kumar, V., “A fast and high quality multilevel scheme for partitioning

irregular graphs”. SIAM Journal on Scientific Computing. 20 (1): 359, 1999.

[114] Schlag, S.; Henne, V.; Heuer, T.; Meyerhenke, H.; Sanders, P.; Schulz, C. “k-way Hy-

pergraph Partitioning via n-level Recursive Bisection”,Proceedings of the Eighteenth

Workshop on Algorithm Engineering and Experiments (ALENEX). Proceedings. Soci-

ety for Industrial and Applied Mathematics. pp. 53-67, 2015.

[115] Chevalier, C.; Pellegrini, F., “PT-Scotch: A Tool for Efficient Parallel Graph Order-

ing”, Parallel Computing. 34 (6), 2007, pp. 318-331.

[116] Walshaw, C.; Cross, M. (2000). “Mesh Partitioning: A Multilevel Balancing and

Refinement Algorithm”, Journal on Scientific Computing, 2000.

[117] Diekmann, R. Preis, R.; Schlimbach, F.; Walshaw, C. “Shape-optimized Mesh Parti-

tioning and Load Balancing for Parallel Adaptive FEM”, Parallel Computing. 26 (12):

2000, pp. 1555-1581.

[118] https://sparse.tamu.edu/DIMACS10

135

Development of Novel Algorithms for Analysis and Visualization of Large Graph

[119] Almende B.V., “vis library”, Copyright (C) ,2010.

[120] https://www.google.com/search/large graph example.

[121] http://dblp.uni-trier.de/xml.

136

